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Abstract. Poor air quality is a major issue in the core city of the Jabodetabek urban 
agglomeration, Jakarta. Unfortunately, this problem is not limited to Jakarta. Other cities in 
Jabodetabek also face similar challenges, where they have experienced similar fluctuations in 
their annual average PM2.5 concentrations based on historical data. This indicates that the air 
quality problem is dependend on the region. The integration of systems and activities among 
these cities may explain this problem. This spatial dependency is dangerous and can lead to 
transboundary health effects. Therefore, this research aims to find evidence of this spatial 
dependency in Jabodetabek. The results show that PM2.5 concentration in Jabodetabek is 
spatially dependent and exhibits a clustered pattern. The highly concentrated core of the 
cluster is Depok, the connecting city between the buffer cities and the core city of Jabodetabek. 
Cities with high-point and mobile hotspot sources, such as South Jakarta, East Jakarta, Bogor, 
and Bogor City, surround Depok, leading to this concentration. 
 
Keywords: Air pollution; PM2.5; Spatial dependency; Spatial pattern; Urban Agglomeration; 
Jabodetabek 

 
1. Introduction  

Living in urban areas can enhance person's quality of life by providing convenience and 
flexibility. However, urbanization also has its drawbacks, such as air pollution, which can 
significantly impact the health of urban communities (Haryanto, 2018; Y. Kim et al., 2017; C. Li et 
al., 2019; Piracha & Chaudhary, 2022; Sierra-Vargas & Teran, 2012; Susanto, 2020). WHO (2022) 
claimed that Air pollution is more dangerous than smoking, tuberculosis, and HIV/AIDS. PM2.5, a 
type of air pollution, can cause respiratory and cardiovascular problems and even hinder the 
growth of young children, leading to increased healthcare costs for the community (Guo et al., 
2018; Hamanaka & Mutlu, 2018; Kashima et al., 2010; Pun et al., 2021; Sacks et al., 2011; Soleman 
et al., 2023; Wei & Tang, 2018; Y. Wu et al., 2019; S. Zhang et al., 2022). The risk of morbidity and 
stunting can impact the quality of human resources and labor productivity, leading to a slowdown 
in economic growth in the short and long term (Aragón et al., 2017; Y. Kim et al., 2017; Pun et al., 
2021). 

Air quality in 65% of urban areas worldwide from 2000 to 2019 has been deteriorating, 
particularly in the Middle East, sub-Saharan Africa, and Southeast Asia (Sicard et al., 2023). This 
increase in air pollution can be attributed to the growing demand for energy in urban economies, 
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which result in higher emissions from both point and mobile sources (She et al., 2021; Zeduo et 
al., 2022). Higher urban economic activities from industries and households are the main sources 
of pollution in urban areas (Farabi & Abdullah, 2020; Qi et al., 2023). Meanwhile, the complex 
structure of urban areas causes traffic congestion, leading to high levels of air pollution from 
mobile sources (Liang & Gong, 2020; Lu et al., 2021; Qiang et al., 2020; Zhou et al., 2018). 

Air pollution can easily spread from one place to another, including across borders, especially 
PM2.5. Unlike other pollutants, PM2.5 can be transported over long distances (Chen & Ye, 2019; D. 
Zhao & Sing, 2017). Evidence from  Kim (2019) shows that PM2.5 concentrations in the coastal 
cities of China can be transported to South Korea and affect air quality in the country. The 
movement of air pollution particles is mainly influenced by the wind speed and direction 
(Kusumaningtyas et al., 2021). Therefore, the PM2.5 concentration in a city can affect the air quality 
of its neighbors (Chen & Ye, 2019; Ding et al., 2019; Feng et al., 2020; Jiang & Bai, 2018; L. Yang et 
al., 2022; Y. Yang et al., 2019; Zeduo et al., 2022; Zezhou & Xiaoping, 2017; Zhan et al., 2017; S. 
Zhao et al., 2018).  

Transboundary or spatial dependencies of PM2.5 concentration can lead to transboundary 
health impacts, slow down the turning point of EKC’s curve, and attenuate the effect of a city’s 
pollution control policy (Ding et al., 2019; He et al., 2021). The transboundary health impact is a 
negative spillover effect in public health that is suffered by neighbors of a high PM2.5 concentrated 
city or country. The transported PM2.5 to neighbors cities will lead to deterioration in air quality 
and cause a public health problem (J. Jung et al., 2022; Liu et al., 2020; S. Wu, 2020). Jung et al. 
(2022), demonstrated a transboundary impact of China air pollution on South Korea’s public 
health. Meanwhile, Liu et al. (2020) and   Wu, (2020) presented the transboundary impact in the 
China region. 

The spatial dependence of air pollution can cause changes in the Environmental Kuznets 
Curve (EKC) relationship (Ding et al., 2019). The original (EKC) model suggests that economy 
growth initially increases environmental damage, such as air pollution. However, there is a 
turning point where environmental damage peaks and then decreases as the economy continues 
to grow. Negative spillover effects from surrounding cities can slow down the turning point of the 
EKC curve when those cities are still in an increasing stage. Ding et al. (2019) explained that 
surrounding cities that have not yet reached a turning point, which will continue to suffer from air 
pollution which will spill over into bordered cities. Spatial dependency can also lead to inaccurate 
identification of potential driving factors for air pollution or inaccurate effects of driving factors, 
which can hinder the development of effective solutions to air pollution (Feng et al., 2020; F. Li et 
al., 2022; She et al., 2021; Y. Yang et al., 2019). 

Controlling air pollution in a city can be challenging because of ot transboundary impact. 
When a city implements mitigation or prevention measures without considering air pollution 
spillovers from neighboring cities, its efforts may be ineffective. For instance, tightening emission 
regulations in a city may prompt emitters to relocate their businesses to surrounding cities with 
more relaxed policies, resulting in an increase in air pollution concentrations in those areas. This 
can lead to spillover effects in cities with stricter regulations (Fang et al., 2019; Feng et al., 2020).  

Metropolitan areas, such as the Jabodetabek Urban Agglomeration, face significant challenges 
in controlling air pollution. In addition to the natural characteristics of PM2.5 that cause air 
pollution to spread further, urban agglomerations can intensify spillover effects between cities. 
An urban agglomeration can shape the spatial pattern of urban land use to become more clustered, 
and use in an agglomeration changes into a clustered area with a specific type of use such as an 
industrial area, commercial area, residential area, etc (M. C. Jung et al., 2019; Rustiadi et al., 2021). 
An urban agglomeration area that becomes more clustered requires transportation to link from 
one are to another or high mobility to facilitate integration in urban agglomerations (Huang & Du, 
2018; M. C. Jung et al., 2019; C. Li et al., 2019; Liao et al., 2015; Lu et al., 2021; Rustiadi et al., 2021; 
Y. Wang et al., 2021; Zezhou & Xiaoping, 2017; Zhou et al., 2018). Such complexity and integration 
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in an urban agglomeration can cause severe spatial dependency of air pollution concentration 
between cities or a transboundary effect of air pollution in an urban agglomeration. 

As urban areas grow in complexity, new challenges arise, such as traffic congestion. 
Unfortunately, this problem has a significant impact on air quality due to the accumulation of 
mobile source emissions in areas with high traffic density, particularly as it relates to PM2.5 (da 
Schio et al., 2019; Huang & Du, 2018; Qi et al., 2023). Interestingly, diesel-powered vehicles emit 
higher levels of PM2.5 at low speeds, while CO emissions are higher at high speeds (Batterman et 
al., 2015). As a result, low-speed traffic congestion tends to generate higher PM2.5 emissions and 
create concentration hotspots. It is crucial to remember that these mobile-source emissions do 
not just come from the city where the traffic is located but can also come from surrounding areas, 
leading to spillover effects that impact populations beyond the immediate vicinity. 

Apart from traffic congestion, urban sprawl in urban agglomerations can also lead to negative 
spillover effects of PM2.5. This phenomenon occurs when growth points emerge in urban 
agglomeration areas, causing additional point source emissions and contributing to increased air 
pollution concentrations. As a result, both the city centre and surrounding areas may suffer from 
air pollution spillover effects. To address this issue, many studies recommend joint regulations for 
all cities within urban agglomeration areas to mitigate spatial dependency (Chen & Ye, 2019; He 
et al., 2021; F. Li et al., 2022; Zeduo et al., 2022). 

Jakarta is the core of Indonesia’s largest urban area, with Jabodetabek as its capital. Jakarta 
has been grappling with severe air pollution since 1990. It is important to recognise that this is 
not just a local issue confined to Jakarta, as traffic congestion plays a significant role in 
exacerbating air pollution, not only within the city but also in buffer zones. The worsening air 
pollution in these buffer cities can have a negative spillover effect on Jakarta and vice versa, and 
the concentration of point source emissions caused by clustering in Jabodetabek may intensify the 
problem.  

Controlling Jakarta’s air pollution requires joint regulation in Jabodetabek, which requires 
proving the spatial dependency of air pollution in the region. However, there is currently no 
empirical evidence to support this claim, highlighting the need for research to identify such 
evidence. Therefore, this research identifies the spatial dependencies within the Jabodetabek 
urban agglomeration. 

2. Research method  
3.2. Spatial weighting method  

Spatial dependency, also known as spatial autocorrelation, refers to the relationship between 
a variable in one location and variables in surrounding areas. The presence of spatial 
autocorrelation can affect the way in which a variable and related factors are modelled. The W 
matrix represents this spatial relationship and describes spatial weighting. The spatial weighting 
method can be contiguity-based such as rook, queen, and Distance-based such as inverse distance, 
exponential distance model, and K-nearest neighbors, etc. The W matrix can take the form of a 
variable or binary matrix depending on the type of spatial weighting applied. Spatial weighting 
methods, such as fixed distance, K nearest neighbors, Delaunay triangulation, contiguity, or space-
time window, use a binary W matrix. In contrast, the variable W matrix is used for the inverse 
distance, exponential distance, and zone of indifference.  

To analyze the spatial distribution of PM2.5 and the spatial relationships between different 
locations in Jabodetabek, this study used the contiguity matrix and inverse distance matrix. The 
contiguity matrix demonstrates that spatial dependence only exists among cities that share 
borders. On the other hand, the inverse distance matrix shows that spatial dependence can occur 
not only between neighboring cities but also between more distant cities, which is influenced by 
their distance. 
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3.2. Moran’s Index 

There are various methods for testing spatial autocorrelation. To determine its presence, 
Moran’s I or Geary’s C index was used. Moran’s I use standardized spatial covariance, whereas 
Geary’s C uses the sum of square distances. On the other hand, spatial regression can be used to 
gauge the strength of spatial dependency. This study will identify the existence of spatial 
dependency in air pollution within the Jabodetabek urban agglomeration. Therefore, the Moran I 
index is used because it is both widely used and powerful.  

Getis (2010) explained that Moran's I index is a highly effective and widely used method for 
detecting the spatial independence of residuals. It is a modified version of the Pearson correlation 
coefficient is commonly used to establish the relationship between two variables. By 
incorporating a weight matrix, Moran’s I can identify correlations in single variables while 
considering the spatial context. The proposed method not only detects spatial autocorrelation in 
data but also measures its strength. There are two types of Moran's I index used to identify spatial 
dependency: Global Moran's I, which detects spatial dependency in the entire data, and local 
Moran's I, which determines the spatial dependency between each area and its surroundings. The 
formula of Global Moran's I is in Equation 1. 

𝐼 =  
𝑛

∑ ∑ 𝑊𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑊𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 (𝑦𝑖 − �̅�) − (𝑦𝑗 − �̅�)

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 𝑖 ≠ 𝑗                                         (1) 

Where 𝐼 is the value of Global Moran’s I, 𝑛 is the number of observations, 𝑖 is the index for the 
observed city, 𝑗 is for neighboring cities of 𝑖 , 𝑊𝑖𝑗  is a spatial weight for the observed city 𝑖 and 

neighboring 𝑗, 𝑦 is the value of the variable, and �̅� is a mean of the variable. 
To assess the significance of the global Moran’s I index, the z-score and p-value can be utilized. 

The null hypothesis being tested is whether the data are randomly distributed. Rejecting the null 
hypothesis indicating spatial dependency. The value of Global Moran's I reflects the degree of such 
spatial dependency, typically ranging from 1 to 1 but potentially being outside this range. A 
positive value denotes clustering or relationship within the data, and a higher value indicates a 
stronger spatial relationship. Conversely, negative values indicate dispersed data, and a value of 
zero indicates no spatial dependency. 

Differing from Global Moran’s I, Local Moran’s I focuses on the relationship between each 
area and its immediate surroundings. By detecting clustered areas, Local Moran's I can provide a 
dependency value for each area individually, enabling a more detailed analysis of spatial patterns. 
Essentially, this statistic measures the spatial clustering of high or low values in a dataset, making 
it a valuable tool for identifying hotspots and spatial outliers. The Local Moran's I is in Equation 2. 

𝐼𝑖 =  
∑ 𝑊𝑖𝑗

𝑛
𝑗=1 (𝑦𝑖 − �̅�) − (𝑦𝑗 − �̅�)

∑ (𝑦𝑗 − �̅�)𝑛
𝑗=1

                                                            (2) 

where 𝐼𝑖 is the value of Local Moran’s I of 𝑖’s city. 
The Local Moran's I is a specialized version of the Global Moran’s I, which exclusively 

examines the spatial dependence of each area-i and is a decomposition of the Global Moran’s I. 
Depending on the outcome, the Local Moran’s I can be positive or negative. Positive values denote 
high or low clustering, and negative values denote spatial outliers. 

To understand the clustering area in greater depth, we can use Moran’s scatterplot. Moran’s 
scatterplot is a visualization of the interaction between y variables and the spatial lag of y 
variables. The pattern in the scatter plot represents the relationship between an area and its 
surroundings. Moran’s scatterplot can also show whether one area is clustered, such as a High-
High value type, which means a high-value area surrounded by high-value areas or a Low-Low 
value type, where a low-value area is surrounded by low-value areas, or whether the area is an 
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outlier with a High-Low value type, where a high-value area is surrounded by low-value areas or 
a Low-High value type, where a low-value area is surrounded by high-value areas. The high-High 
value type shows that the point is located in the 1st quadrant, the 2nd quadrant is for the Low-High 
value type, the 3rd quadrant is for the Low-Low value type, and the 4th quadrant is for the High-
Low value type.   

3.5. Data sources 

The data used in this research comprise the annual average PM2.5 levels in the cities within 
Jabodetabek. The data were obtained from aqli.epic.uchicago.edu, an open data source maintained 
by the Energy Policy Institute of the University of Chicago. The data were processed using satellite-
derived PM2.5 data by the Atmospheric Composition Analysis Group at the University of 
Washington (Hammer et al., 2020). These data are ideal for analyzing patterns of PM2.5 
concentrations in urban areas caused by human activities, such as transportation and industry, as 
they are claimed to be free from natural sources of emission like forest fires and volcanoes. The 
data cover an annual time series from 1998 to 2021. 

3. Result and discussion 

3.5. Change in PM2.5 concentration of Jabodetabek urban agglomeration cities in 1998-

2021 

PM2.5 concentrations in Jakarta and its neighboring cities have exceeded the WHO guidelines 
for an annual average concentration of PM2.5 which is 5 μg/m3 since 1998, as shown in Figure 1. 
According to historical data on Jabodetabek’s PM2.5 concentration, the concentration of PM2.5 
during 2998-2021 was almost 5 to 7 times from WHO guidelines. Figure 1 depicts the average 
annual concentration pattern in Jabodetabek, which exhibits a consistent upward fluctuation.  
Sicard et al. (2023) confirmed this trend, reporting a 1%-3% increase in PM2.5 concentrations 
across Southeast Asia from 1998 to 2019. In the case of Jabodetabek cities, before the 2000s, the 
region’s average annual PM2.5 concentration was 20 μg/m3 to 25 μg/m3, which increased to 30 
μg/m3 till 36 μg/m3 in the 2010s and beyond. This indicates a sharp increase in PM2.5 
concentration before 2006, followed by a gentler slope with wider fluctuations thereafter. 

 
Figure 1. Annual average of PM2.5 concentration of Jabodetabek cities from 1998 to 2021 (Hammer et al., 

2020) 
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Changes in the yearly average PM2.5 concentration can be attributed to variations in the 
number of rainy days. Rainfall has a negative relationship with atmospheric PM2.5 concentrations, 
as supported by studies by Tian et al. (2021), R. Wang et al. (2023), and Yu et al. (2021). Rain can 
disperse harmful gases and deposit particulate matter onto the wet earth's surface. During 
rainfall, the concentration of PM2.5 in the atmosphere can decrease by approximately 20%-50% 
(Tian et al., 2021; R. Wang et al., 2023). Figure 2 depicts how the level of PM2.5 concentration in 
Jabodetabek interacts with the number of rainy days each year. This figure shows that a higher 
number of rainy days correspond to a lower annual average PM2.5 concentration, and vice versa. 

 
Figure 2. Annual average of PM2.5 concentration and number of rainy days in a year of Jabodetabek from 

2006 to 2021 (Funk et al., 2015; Hammer et al., 2020) 

In Figure 1, it can be observed that the fluctuation patterns of the 13 cities are uniform. This 
uniformity indicates a correlation between the PM2.5 concentrations in these cities. Specifically, 
the high and low annual average PM2.5 concentrations of a city are dependent on the concentration 
levels of surrounding cities. This spatial pattern is also visible in Figure 3, which presents the 
annual average concentration of PM2.5 in Jabodetabek. The maps in Figure 3 show clustering of 
high-concentration areas in the middle of the Jabodetabek region, specifically in Depot, Tangerang 
South, East Jakarta, and South Jakarta. To confirm this spatial correlation, global and local Moran 
calculations can be examined. 

 

 

Figure 3. Annual average of PM2.5 concentration map of Jabodetabek urban agglomeration (Hammer et al., 

2020)  
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3.2. Spatial correlation trend of the annual average PM2.5 in Jabodetabek from 1998 to 2021 
The result of the Jabodetabek urban agglomeration’s global Moran’s I indicates that the value 

of global Moran’s I is mostly positive (see Table 1). A positive global Moran's I value indicates a 
clustered spatial pattern of PM2.5 concentration in the Jabodetabek urban agglomeration. 
According to Table 1, with a 95% confidence level, there is a spatial dependency of the annual 
average of PM2.5 concentration between cities that share borders in the Jabodetabek urban 
agglomeration. The most significant value of the global Moran's index on the contiguity-weighted 
matrix is evidence of this. However, in the inverse distance matrix, the only significant global 
Moran index values are 1999 and 2018. This indicates that cities that do not share similar borders 
do not have a spatial dependency of annual average PM2.5 concentration on each other. 

Table 1. Result of Global Moran I for 13 Cities in Jabodetabek 1998-2021 

Year Contiguity 
Inverse 
distance 

Year Contiguity 
Inverse 
distance 

1998 0.1634 0.1041 2010 0.1932 0.0344 

1999 0.423** 0.3457** 2011 0.25* 0.1142 

2000 0.2388* 0.1197 2012 0.2394* 0.1522 

2001 0.1839 0.0692 2013 0.2372* 0.1465 

2002 0.2187* 0.1229 2014 0.3208* 0.1946 

2003 0.2267* 0.1073 2015 0.2925* 0.2102 

2004 0.2191 0.0555 2016 0.3157** 0.116 

2005 0.2375* 0.1328 2017 0.3798** 0.213 

2006 0.2262* 0.0816 2018 0.3497** 0.3517** 

2007 0.247* 0.1153 2019 0.253* 0.1766 

2008 0.2139 0.0633 2020 0.3443** 0.1903 

2009 0.2169 0.118 2021 0.3033** 0.1137 

             t statistics in parentheses:  *** p < 0.001, ** p < 0.01, * p < 0.05 

The calculated Global Moran's I value fell within the range of 0.2–0.4, indicating a relatively 
weak to medium spatial relationship among PM2.5 concentrations in Jabodetabek. Note that the 
global Moran's Index range is 1 to 1, where negative values indicate sparse patterns and positive 
values indicate clustered patterns. Additionally, the results show that, over time, the global 
Moran’s I value increases, indicating that the positive spatial correlation strengthens. 

3.5. Spatial pattern of PM2.5 concentration in Jabodetabek   

To gain a better understanding of the spatial distribution of PM2.5 concentrations in the 
Jabodetabek urban agglomeration, it can be through a Moran scatterplot. The scatterplot is based 
on spatial lag calculations from previously calculated global Moran's I result. Figure 4 shows 
Moran's I scatterplot, which displays the correlation between a city's PM2.5 concentration and its 
spatial lag. The slope of the linear line in the scatterplot indicates the level of spatial correlation; 
an increasing slope indicates a positive correlation. After identifying cluster points or outliers via 
local Moran's I calculations, we can further discuss the Moran scatterplot. The Moran scatterplot 
depicts data from 2000 to 2021, presented in seven-year intervals, and provides an overview of 
pattern changes from 1998 to 2022, with each year displaying a significant Moran value.  

In the Jabodetabek area, cities can be divided into two categories: High-High value type or 
Low-Low value type. This implies that Jabodetabek is typically surrounded by neighbours with 
similar PM2.5 concentrations. To determine which local dependency is significant, we perform 
Local Moran’s I calculation. Table 2 displays the results of local Moran’s I for Jabodetabek cities 
per seven years from 2000 to 2021, which were used in Moran’s scatterplot. 
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Figure 4. Moran’s I scatterplot of PM2.5 concentration and spatial lag of PM2.5   

Table 2. Result of Local Moran’s I of 13 cities in Jabodetabek per seven years from 2000-2021 

City 2000 2007 2014 2021 

Bekasi Regency -0.14 -0.135 0.0339 0.0955 

Bogor Regency 0.07 0.0116 0.0944 0.0367 

West Jakarta 0.06 0.1704 0.5378 0.4754 

Central Jakarta 0.04 0.0272 0.1367 0.1088 

South Jakarta  0.57* 0.4554 0.1689 0.2881 

East Jakarta  0.41 0.3221 -0.007 0.021 

North Jakarta  0.16 0.2868 0.95** 0.94** 

Bekasi City 0.14 0.1976 0.084 0.1473 

Bogor City 0.11 0.0071 0.408 0.0939 

Depok City 0.95** 1.07*** 1.09*** 0.91** 

Tangerang City 0.09 0.1568 0.0296 0.0157 

South Tangerang 0.0032 0.0035 0.2852 0.1671 

Tangerang Regency 0.625* 0.637* 0.357 0.640* 

             t statistics in parentheses:  *** p < 0.001, ** p < 0.01, * p < 0.05 

 

According to the local Moran's I result presented in Table 2, it was discovered that the pattern 
over a year is similar. The four cities had significant local Moran’s I value with a p-value of 0.05, as 
shown in Table 2. Most of the samples had a positive local Moran value, indicating that this city is 
surrounded by a similar annual average of PM2.5 concentration. Depok City is the core of the cluster 
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area where a high concentration of PM2.5 is clustered, followed by a low value of PM2.5 
concentration cluster city in the outer area of the Jabodetabek urban agglomeration. This result is 
also depicted in the map in Figure 5 to show the spatial pattern. 

 

 

 

Figure 5. Local Moran’s I Clustered Map of PM2.5 Concentration of Jabodetabek Urban Agglomeration 

In 2000, besides Depok City, South Jakarta was also found as a local cluster with a high-to-
high value type, while Tangerang regency was found to be a low-to-low value cluster type. Seven 
years later, in 2007, it was found that the local Moran’s I value for South Jakarta was not significant, 
but Depok City and Tangerang Regency remained the same. In 2014, there was a shifting pattern 
in the Low-Low cluster core. In 2000 and 2007, Tangerang Regency was found to be significant, 
but in 2014, a significant low-low value cluster type was found in North Jakarta. High-High-value 
cities in 2014 remained the same as in 2007. The significant value of local Moran’s I was found 
again in Tangerang Regency in 2021, where this year three areas were found to be significant: 
Depok with a High-High value type of cluster, and North Jakarta and Tangerang Regency with a 
Low-Low value type of cluster. 

3.5. Spatial correlation pattern of PM2.5 concentration in Jabodetabek before and during 

social restriction   

A study by Pramana et al (2020) found that social restriction policies implemented during 
the COVID-19 pandemic in Jabodetabek positively affected air quality. This led researchers to 
hypothesize that there may have been changes in the patterns of PM2.5 concentrations in the area. 
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Understanding these changes in spatial patterns can be obtained by analyzing the previous results 
for Global and Local Moran's I. 

Upon comparing the results in Figure 4 from 2021, when social restrictions were in place for 
the entire year, to the previous year, the study found a small change in the pattern of PM2.5 
concentration during the social restrictions. Comparing the patterns between 2014 and 2021, we 
found that Tangerang Regency returned to be a cluster point of low-value concentration of PM2.5. 
This indicated that the pattern was largely the same but with a narrower high PM2.5 concentration 
cluster area. 

In the context of spatial dependency, we did not find any significant impact on the power of 
dependency. The global Moran's I result showed no significant change in spatial dependency in 
Jabodetabek and the value of global Moran's I followed years before social restrictions were 
implemented for the entire year. 

3.5. Discussion 

PM2.5 emissions in different cities throughout Jabodetabek have distinct sources and 
characteristics. In DKI Jakarta, PM2.5 emissions are mainly composed of black carbon and sulphate, 
which are caused by diesel vehicle usage (Santoso et al., 2020). TomTom’s report on the TomTom 
website shows that traffic congestion was higher in Central Jakarta and South Jakarta during 
October 2022 than in surrounding cities. The MoEF’s (MoEF) continuous industrial emissions 
monitoring information system data revealed that there are many point source emissions 
originating primarily from the processing industry in East Jakarta, North Jakarta, Benasi, and 
Bogor Regency. In numerous areas within Bogor Regency, dust from multiple cement factories 
dominates PM2.5 pollution (Suhariyono, 2016). South Tangerang has many residential areas where 
the primary sources of PM2.5 emissions are motorised vehicles, road dust, and diesel power plants. 
However, the sources of emission in South Tangerang are not only from residential areas but also 
from industrial areas (Santoso et al., 2011). In contrast to other cities in Jabodetabek, Bogor, 
Tangerang, and Bekasi, the annual average of PM2.5 relatively lower. Although all three regencies 
have several point sources of emissions, such as industrial and residential areas, the total area of 
the three regencies is vast, and the population density is dispersed. Hence, the concentration of 
PM2.5 can vary significantly within a regency area, resulting in small results when calculating the 
annual average of PM2.5 concentrations in these areas. 

Based on global Moran's I calculations and testing, it has been confirmed that there exists a 
spatial correlation between PM2.5 concentrations in Jabodetabek. This correlation was found to be 
positive or clustered. However, as the cluster area expanded or the observation area moved 
further away, the strength of the correlation weakened. This is due to the diffusion of PM2.5 and 
the direction and speed of the wind carries. As PM2.5 diffuses, it spreads from the emission source 
to surrounding areas. Further transport via wind decreases pollutant concentration (Chen & Ye, 
2019; Kusumaningtyas et al., 2021; Sirithian & Thanatrakolsri, 2022; J. Wang et al., 2023; S. H. 
Yang et al., 2020; Z. Zhang et al., 2023). 

Over the years, there has been a significant increase in the spatial correlation of PM2.5 
concentrations in Jabodetabek. Before 2010, the global value of Moran's I was less than 0.25, but 
it began to increase after 2010. This shift can be attributed to the massive development of 
Jabodetabek and changes in the urban form of the region, specifically due to the type of urban 
expansion in Jabodetabek.  The urban expansion type in Jabodetabek is known as a conurbation, 
meaning that the buffer city is united with the core city through transportation integration that 
connects the cities (Rustiadi et al., 2021). This has resulted in the formation of cluster areas with 
specific land uses like industrial, commercial, and residential areas, leading to an accumulation of 
PM2.5 concentrations in each area caused by the concentration of point source emissions (M. C. 
Jung et al., 2019; Park & Ko, 2018). Consequently, there is a higher risk of spillover effects on the 
air quality of surrounding areas. 
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The integration of cities in Jabodetabek leads to higher mobility, as the clustering of areas 
during urban expansion creates complexity in urban form. This complexity encourages mobility 
within an area and drives the number of commuters in urban agglomeration areas (Batterman et 
al., 2015; Lu et al., 2021). However, this increase in mobility can lead to a high use of private 
vehicles if public transportation is insufficient, resulting in an increase in the number of mobile 
sources of emissions. In addition, traffic congestion is a common problem in the area, and it can 
cause hotspots for mobile sources of PM2.5 emissions. During traffic hours, diesel vehicles emit 
higher levels of PM2.5 due to low speeds, which can worsen air quality (Gately et al., 2017). This 
increase in mobility also indirectly increases spatial correlation, as mobile-source emissions that 
worsen the air quality of an area can come from the surrounding area (F. Li et al., 2022; She et al., 
2021). 

After examining the results of local Moran's I calculations for PM2.5 concentrations in 
Jabodetabek, it was evident that the epicentre of the high PM2.5 concentration cluster area was 
Depok, which was positioned in the center of the Jabodetabek area when viewed from its latitude 
and longitude. This can be explained by the transportation network in which Depok acts as a link 
between several regions and serves as a gateway to the core of the agglomeration, or Jakarta, 
leading to a high volume of commuter traffic flows through Depok. A report from Indonesia 
Statistics (2019) shows that approximately 800.000 commuter workforces originating or passing 
through Depot. Furthermore, public transportation outside of Jakarta, such as Depot, Bogor city 
and district, South Tangerang, and other cities, tends to be less developed than in DKI Jakarta, 
leading to more individuals opting to use private vehicles for their daily activities, thereby 
contributing to high mobile-phone sources.  

Although Depok has fewer point sources than other areas, it is surrounded by cities with high 
point sources, such as East Jakarta, which has numerous sources of PM2.5 in the industrial sector, 
South Jakarta with high traffic hours, South Tangerang, which is primarily used as a residential 
area, and Bogor district, which has numerous factories. Therefore, the PM2.5 that is emitted from 
neighboring cities of Depok can be transported to Depok, and it has a negative spillover effect on 
air quality by increasing the PM2.5 concentration. 

During the social restrictions, there was a noticeable change in the spatial patterns of air 
pollution in Jabodetabek. Areas with high pollution concentrations became smaller, while areas 
on the outskirts experienced a decrease in pollution concentration. This change is supported by 
the findings of Local Moran’s I analysis, which indicated the emergence of a low-low value cluster 
in West Jakarta and the disappearance of Bogor city as part of the center of the high PM2.5 
concentration cluster. This change is due to limited activities and reduced mobility, which have 
decreased emissions from point and mobile sources. This agrees with the findings of previous 
studies that have shown that social restrictions have a positive impact on air quality (Keshtkar et 
al., 2022; Pramana et al., 2020). 

Based on the results and discussion, it was established that there is a spatial correlation in 
PM2.5 in Jabodetabek. This correlation has been validated, indicating that further consideration is 
necessary to effectively mitigate and control pollution. The presence of spatial correlation can 
result in transboundary public health risks throughout the Jabodetabek region. Additionally, it can 
reduce the effectiveness of pollution control policies due to the canceling effect caused by spatial 
dependency.  

Therefore, it is recommended that pollution control policies with joint regulations be 
implemented in the Jabodetabek area. This suggestion aligns with previous studies that 
recommended implementing joint regulation of pollution control policies in urban agglomeration 
regions (Huang & Du, 2018; M. C. Jung et al., 2019; C. Li et al., 2019; Liao et al., 2015; Lu et al., 2021; 
Y. Wang et al., 2021; Zezhou & Xiaoping, 2017; Zhou et al., 2018). By doing so, air quality problems 
can be resolved more effectively. 
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4. Conclusion 
The findings reveal a clear spatial correlation between PM2.5 concentrations in the 

Jabodetabek urban agglomeration. Over time, this correlation has become stronger as 
Jabodetabek's cities have become more interconnected. Notably, the highest concentration of 
PM2.5 is at the center of Jabodetabek, in the city of Depot. This city experiences significant 
commuter traffic and is surrounded by other cities with PM2.5 emission hotspots. This situation is 
likely due to changes in Jabodetabek's shape, which have resulted in the creation of point source 
emission areas, as well as increased mobility and commuter flows. These factors have led to 
increased spillover effects from point source emissions and private vehicles, worsening regional 
air pollution. The presence of this spatial correlation also raises concerns about potential 
transboundary health risks. To tackle air pollution in Jabodetabek, it's essential to develop joint 
regional policies that can address the spatial correlation and avoid canceling effects. Limitation: 
This study does not take into account the impact of variations in the size of each city and district 
because the calculation of PM2.5 concentration is done by averaging the concentration value per 
pixel in the satellite image data. Additionally, the distance between city districts is determined 
using the center point of latitude and longitude for each city and district. The observation of the 
spatial patterns of PM2.5 concentrations is also limited to geographical location factors, without 
considering other socioeconomic factors that may affect the spatial patterns of PM2.5 
concentrations. 
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