Plate and faults boundary detection using gravity disturbance and Bouguer gravity anomaly from space geodesy

Main Article Content

Atriyon Julzarika
Argo Galih Suhadha
Indah Prasasti


Nowadays, satellite technology has developed significantly. Geodesy satellites such as Grace and Grace-FO can be used for subsurface mapping. The mapping is in the form of detection of the plate details, faults, and regional geodynamic conditions. This study aims to detect plate and faults from space geodesy using the gravity disturbance and Bouguer gravity anomaly parameter. The study area is in the Sunda Strait. Gravity disturbance is one of the gravity model parameters. Gravity disturbance is the gravitational potential of the topography expressed by the spherical harmonic model and the topographic effect by Barthelmes's calculations. Gravity disturbance can visualize subsurface conditions. Bouguer gravity anomaly is needed to get the condition on subsurface objects. This parameter visualizes subsurface conditions in the form of rocks and non-rocks. These conditions can distinguish oceanic crust and continental crust. Gravity contours are needed to obtain plate and faults predictions. The results obtained are validated patterns and shapes with plate and faults secondary data. The tolerance used in this validation is 80%. The gravity disturbance parameter obtained a value of 83% in verifying the accuracy of assessment in plate and faults detection. The Bouguer gravity disturbance parameter obtained a verification value of accuracy assessment in plate detection but 65% in faults detection. This accuracy assessment uses pattern and texture parameters in detecting the similarity of two or more images. This plate and faults detection results are more detailed and can be used for geophysical, geological, earthquake, and earth dynamics applications.

Article Details

How to Cite
Julzarika, A., Suhadha, A. G., & Prasasti, I. (2020). Plate and faults boundary detection using gravity disturbance and Bouguer gravity anomaly from space geodesy. Sustinere: Journal of Environment and Sustainability, 4(2), 117–131.
Alifa, S. M., Fattah, E. I., & Munawar Kholil. (2020). Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), 222–228.
Balmino, G., & Bonvalot, S. (2016). Gravity Anomalies. In Encyclopedia of Geodesy (pp. 1–9). Springer. Cham.
Balmino, G., Vales, N., Bonvalot, S., & Briais, A. (2012). Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 86(7), 499–520.

Barthelmes, F. (2013). Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Scientific Technical Report STR09/02, Revis. Potsdam.

Barthelmes, F. (2014). Global Models. In G. E. (Ed.), Encyclopedia of Geodesy (pp. 1–9). Springer International Publishing.

Bayoud, F. A., & Sideris, M. G. (2003). Two different methodologies for geoid determination from ground and airborne gravity data. Geophysical Journal International, 155(3), 914–922.
BMKG. (2020). Megathrust Selatan Jawa-Selat Sunda. Jakarta.

Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biance, R., Gabalda, G., Reinquin, F. (2012). World Gravity Map : a set of global complete spherical Bouguer and isostatic anomaly maps and grids. In EGU General Assembly 2012, 22-27 April (p. 11091). Vienna.

Claessens, S. J., & Hirt, C. (2013). Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. JGR Solid Earth, 118(11), 5991–6002.

Doğru, F., & Pamukçu, O. (2019). Analysis of gravity disturbance for boundary structures in the Aegean Sea and Western Anatolia. Geofizika, 36(1), 53–76.

Drewes, H., Kuglitsch, F., Adám, J., & Rózsa, S. (2016). Geodesy The Handbook. Journal of Geodesy, 90(10), 907–1205.

ESA. (2020). Grace Satellites. Retrieved from European Space Agency

Fukuda, T., Tokuhara, T., & Yabuki, N. (2016). A dynamic physical model based on a 3D digital model for architectural rapid prototyping. Automation in Construction, 72(Part 1), 9–17.

Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F. L., Ward, S. N., Grilli, A. R., Engwell, S.L., Zhang, C., Kirby, J.T., Schamarch, L. Muin, M. (2019). Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific Report, 9, 11946.

Hani, A. F. M., Sathyamoorthy, D., & Asirvadam, V. S. (2011). A method for computation of surface roughness of digital elevation model terrains via multiscale analysis. Computer and Geosciences, 37(2), 177–192.

Hanssen, R. F. (2002). Radar Interferometry: Data Interpretation and Error Analysis. Springer Netherlands.

Hirt, C., & Kuhn, M. (2012). Evaluation of high‐degree series expansions of the topographic potential to higher‐order powers. Journal of Geophysical Research, 117(B12), 1–12.

Hirt, C., Kuhn, M., Featherstone, W. E., & Göttl, F. (2012). Topographic/isostatic evaluation of new‐generation GOCE gravity field models. Journal of Geophysical Research, 117(B5), 10–16.

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy. Second edition. New York: SpringeWien.

Hurukawa, N., Wulandar, B. R., & Kasahara, M. (2014). Earthquake history of the Sumatran fault, Indonesia, since 1892, derived from the relocation of large earthquakes. Bulletin of the Seismological Society of America, 104(4), 1750–1762.

Hutchinson, M., & Gallant, J. C. (2000). Digital elevation models and representation of terrain shape. In J. P. Wilson & J. C. Gallant (Eds.), Terrain Analysis: Principles and Applications (pp. 29–50). John Wiley & Sons.

Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., & Schuh, H. (2019). ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 11, 647–674.

Julzarika, A. (2015). Height Model Integration using ALOS PALSAR, X SAR, SRTM C, and ICESat/GLAS. International Journal of Remote Sensing and Earth Sciences, 12(2), 107 – 116.

Julzarika, A., & Harintaka. (2019). Utilization of Sentinel Satellite for Vertical Deformation Monitoring in Semangko Fault-Indonesia. In The 40th Asian Conference on Remote Sensing (ACRS 2019) October 14-18, 2019 / Daejeon Convention Center (DCC), Daejeon. Daejeon, South Korea.

Lanari, R., Mora, O., Manunta, M., Mallorqui, J. J., Berardino, P., & Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1377–1386.

Lasitha, S., Radhakrishna, M., & Sanu, T. D. (2006). Seismically active deformation in the Sumatra–Java trench-arc region: geodynamic implications. Current Science, 90(5), 690–696. Retrieved from

Ledoux, H., & Gold, C. (2005). An Efficient Natural Neighbour Interpolation Algorithm for Geoscientific Modelling. In Development in Spatial Handling (pp. 97–108). Springer Berlin Heidelberg.

Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying (Fourth edition. ed.). United States: John Wiley & Sons, Inc.

Li, L., & Kuai, X. (2014). An efficient dichotomizing interpolation algorithm for the refinement of TIN-based terrain surface from contour maps. Computer and Geosciences, 72, 105–121.

McKenzie, D., & Priestley, K. (2016). Speculations on the formation of cratons and cratonic basins. Earth and Planetary Science Letters, 435, 94–104.

Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40–48.

NASA. (2018). Remote Sensors. Retrieved from National Aeronautics and Space Administration

Natawidjaja, D. H. (2018). Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia. IOP Conference Series: Earth and Environmental Science, 118, 1–11.

Raaflau, L. D., & J.Collins, M. (2006). The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling & Software, 21(5), 710–732.

Sansosti, E., Casu, F., Manzo, M., & Lanari, R. (2010). Space-borne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth’s surface displacement analysis. Geophysical Research Letters, 37(20), L20305.

Serrano-Juan, A., Pujades, E., Vázquez-Suñèa, E., Crosetto, M., & Cuevas-González, M. (2017). Leveling vs. InSAR in urban underground construction monitoring: Pros and cons. Case of la sagrera railway station (Barcelona, Spain). Engineering Geology, 218, 1–11.

Szostak-Chrzanowski, A. (2006). Interdisciplinary approach to deformation analysis in engineering, mining, and geosciences projects by combining monitoring surveys with deterministic modeling. Part 1. Technical Sciences/University of Warmia and Mazury in Olsztyn, 9, 147–172.

Turcotte, D., & Schubert, G. (2014). Geodynamics. 3rd edition. Cambridge: Cambridge University Press.
Venera, J., Anton, F., Irina, K., & Alena, Y. (2016). SAR Interferometry Technique for Ground Deformation Assessment on Karazhanbas Oilfield. Procedia Computer Science, 100, 1163–1167.

Yue, T. X., Du, Z. P., Song, D. J., & Gong, Y. (2007). A new method of surface modeling and its application to DEM construction. Geomorphology, 91(1–2), 161–172.