Anthropogenic influences on morphological changes in the Progo River, Daerah Istimewa Yogyakarta Province, Indonesia

Main Article Content

Akhmad Zamroni Bayurohman Pangacella Putra Haris Nur Eka Prasetya


Changes in the river morphology require knowledge of the suite of drivers that control it, whether natural or human. The study aims to analyze the anthropogenic influences on morphological changes in the Progo River using Google Earth Images. It is essential to know the recent changes in the morphology of the Progo River so that stakeholders can make policies to control human activities that influence the morphology changes of the Progo River. The study area is located in Bantul Regency, Daerah Istimewa Yogyakarta Province, Java Island, Indonesia. The size of ​​the Progo River watershed is around 17,432 square kilometers. Google Earth Images analysis is carried out to analyze the morphological changes of the Progo River from 2012 to 2019. The result shows that land-use changes due to dam construction affected the sediment supply downstream of the dam. In addition, land-use changes around the Progo River due to the opening of agricultural land and settlement areas had an effect on decreasing the infiltration area, so that the number of trees holding the soil from erosion was reduced, producing more eroded sediment that flowed to the river. Sand mining in the river could cause the deepening of water depths and a decrease in the average height of the riverbed.

Article Details



Abate, M., Nyssen, J., Steenhuis, T.S., Moges, M.M., Tilahun, S.A., Enku, T., & Adgo, E. (2015). Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia. Journal of Hydrology, 525, 152-164.
Barau, A.S., Maconachie, R., Ludin, A.N.M., & Abdulhamid, A. (2015). Urban morphology dynamics and environmental change in Kano, Nigeria. Land Use Policy, 42, 307-317.
Bentley Sr, S.J., Blum, M.D., Maloney, J., Pond, L., & Paulsell, R. (2016). The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth-Science Reviews, 153, 139-174.
Bodzin, A. M., Anastasio, D., & Kulo, V. (2014). Designing Google Earth activities for learning Earth and environmental science. In Teaching science and investigating environmental issues with geospatial technology (pp. 213-232). Dordrecht.: Springer. doi:
Brunier, G., Anthony, E.J., Goichot, M, Provansal, M., & Dussouillez, P. (2014). Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of riverbed mining and implications for delta destabilisation. Geomorphology, 224, 177-91.
Buffington, J.M. (2012). Changes in channel morphology over human time scales [Chapter 32]. In: Church, Michael; Biron, Pascale M.; Roy, Andre G., eds. Gravel-Bed Rivers: Processes, Tools, Environments. Chichester, UK: Wiley. p. 435-463., 435-463. doi:
Coe, M.T., Latrubesse, E.M., Ferreira, M.E., & Amsler, M.L. (2011). The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry, 105(1-3), 119-131. doi:
Costigan, K.H., Jaeger, K.L., Goss, C.W., Fritz, K.M., & Goebel, P.C. (2016). Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology, 9(7), 1141-1153. doi:
Dai, S.B., & Lu, X.X. (2014). Sediment load change in the Yangtze River (Changjiang): a review. Geomorphology, 215, 60-73.
Downs, P.W., Dusterhoff, S.R., & Sears, W.A. (2013). Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA. Geomorphology, 189, 121-134.
Du, J.L., Yang, S.L., & Feng, H. (2016). Recent human impacts on the morphological evolution of the Yangtze River delta foreland: A review and new perspectives. Estuarine, Coastal and Shelf Science, 181, 160-9.
Fitriadin, A.A., Ikhsan, J.U., & Harsanto, P. (2017). Morphology analysis in middle-downstream area of Progo River due to the debris flow. In: Green Process, Material, and Energy: A Sustainable Solution for Climate Change. doi:
Ghimire, S., & Higaki, D. (2015). Dynamic river morphology due to land use change and erosion mitigation measures in a degrading catchment in the Siwalik Hills, Nepal. International Journal of River Basin Management, 13(1), 27-39.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.
Harsanto, P. (2015). River morphology modeling at the downstream of Progo River post eruption 2010 of Mount Merapi. In: The 5th Sustainable Future for Human Security (Sustain 2014). pp. 148-157. doi:
Isik, S., Dogan, E., Kalin, L., Sasal, M., & Agiralioglu, N. (2008). Effects of anthropogenic activities on the Lower Sakarya River. Catena, 75(2), 172-81. doi:
Jiang, C., Pan, S., & Chen, S. (2017). Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications. Geomorphology, 293, 93-107. doi:
Kamarudin, M.K.A., Toriman,M. E., Rosli, M.H., Juahir, H., Aziz, N.A.A., Azid, A., ... & Sulaiman, W.N.A. (2015). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20(8), 1319-1334. doi:
Kiss, T., & Blanka, V. (2012). River channel response to climate-and human-induced hydrological changes: Case study on the meandering Hernád River, Hungary. Geomorphology, 175, 115-25. doi:
Kulkarni, M.D. (2015). The basic concept to study morphometric analysis of river drainage basin: a review. International Journal of Science and Research, 4(7), 2277-2280.
Lane, S. N., Widdison, P. E., Thomas, R. E., Ashworth, P. J., Best, J. L., Lunt, I. A., ... & Simpson, C. J. (2010). Quantification of braided river channel change using archival digital image analysis. Earth Surface Processes and Landforms, 35(8), 971-85. doi:
Mueller, E. R., & Pitlick, J. (2013). Sediment supply and channel morphology in mountain river systems: 1. Relative importance of lithology, topography, and climate. Journal of Geophysical Research: Earth Surface, 118(4), 2325-2342. doi:
Pan, L.Z., Ding, P.X., Ge, J.Z., Hu, & K.L. (2011). Analysis of influence of Deep Waterway Project on morphological change in North Passage of Changjiang Estuary. Journal of Sediment Research, 5: 51-9. doi:
Raven, E.K., Lane, S.N., & Bracken, L.J. (2010). Understanding sediment transfer and morphological change for managing upland gravel-bed rivers. Progress in Physical Geography, 34(1), 23-45. doi:
Rezagama, A., Sarminingsih, A., Zaman, B., & Handayani, D.S. (2019). Analysis of land use changes effect on erosion and sedimentation potential in Progo watershed. In: Journal of Physics: Conference Series. doi:
Rinaldi, M., Gurnell, A.M., Del Tánago, M.G., Bussettini, M., & Hendriks, D. (2016). Classification of river morphology and hydrology to support management and restoration. Aquatic Sciences, 78(1), 17-33. doi:
Shrestha, S., Imbulana, N., Piman, T., Chonwattana, S., Ninsawat, S., & Babur, M. (2020). Multimodelling approach to the assessment of climate change impacts on hydrology and river morphology in the Chindwin River Basin, Myanmar. Catena, 188, 104464.
Suprapto, N., Zamroni, A., & Yudianto, E.A. (2017). One Decade of the “LUSI” Mud Volcano: Physical, Chemical, and Geological Dimensions. CHEMISTRY, 26(4), 615-629. eid: 2-s2.0-85028600271
Tanaka, H., Hoang, V.C., & Viet, N.T. (2016). Investigation of morphological change at the Cua Dai river mouth through satellite image analysis. Coastal Engineering, 2016. doi:
Uddin, K., Shrestha, B., & Alam, M.S. (2011). Assessment of morphological changes and vulnerability of riverbank erosion alongside the river Jamuna using remote sensing. Journal of Earth Science and Engineering, 1(1), 29-34.
Udo, K., Takeda, Y., & Tanaka, H. (2016). Coastal morphology change before and after 2011 off the Pacific coast of Tohoku earthquake tsunami at Rikuzen-Takata coast. Coastal Engineering Journal, 58(4), 1640016-1. doi:
Williams, R.D., Rennie, C.D., Brasington, J., Hicks, D.M., & Vericat, D. (2015). Linking the spatial distribution of bed load transport to morphological change during high‐flow events in a shallow braided river. Journal of Geophysical Research: Earth Surface, 120(3), 604-622. doi: 2014JF003346
Zamroni, A., Sugarbo, O., Prastowo, R., Widiatmoko, F.R., Safii, Y., & Wijaya, R.A.E. (2020, July). The relationship between Indonesian coal qualities and their geologic histories. In AIP Conference Proceedings (Vol. 2245, No. 1, p. 070005). AIP Publishing LLC. doi:
Zamroni, A., & Suprapto, N. (2017). Exploring of factors influencing the rocks resistivity value: comparative study of resistivity values in some areas. In Prosiding Seminar Nasional Fisika (SNF) (Vol. 1, pp. 49-53).
Zhang, W., Xu, Y., Hoitink, A.J., Sassi, M.G., Zheng J, Chen, X., & Zhang, C. (2015). Morphological change in the Pearl River Delta, China. Marine Geology, 363, 202-19. doi:
Ziliani, L., & Surian, N. (2012). Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology, 173, 104-17. doi:
Zurqani, H.A., Post, C.J., Mikhailova, E.A., Schlautman, M.A., & Sharp, J.L. (2018). Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. International journal of applied earth observation and geoinformation, 69, 175-185.