Spatio-temporal analysis of built-up area and land surface temperature in Surakarta using Landsat imageries
Main Article Content
Abstract
The need for built-up areas continues to increase, along with the increasing population in the city of Surakarta and its surrounding. This condition affects the land surface temperature which then leads to the change in climatic conditions. The availability of land for settlement and surface temperature will affect the comfort level of living in a city. For this reason, this study aims to map the distribution of built-up area and the surface temperature of Surakarta city and discusses the relationship between these two aspects spatially and temporally. The data used are Landsat imageries recorded in 2000, 2013, and 2019. The built-up area was identified using Normalized Difference Built-Up Index (NDBI), while the temperature data was obtained through thermal band processing using Land Surface Temperature (LST) method. The results showed that during the period of the study, the built-up area and the surface temperature in Surakarta and its surroundings increased, especially in the eastern and southern parts of Surakarta. The results also showed that there is a positive correlation between the built-up index and its surface temperature.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Adeanti, M., & Harist, C. (2018). Analisis spasial kerapatan bangunan dan pengaruhnya terhadap suhu studi kasus di Kabupaten Bogor (Spatial Analysis of Building Density and Its Effect on Temperature). Seminar Nasional Geomatika: Penggunaan dan Pengembangan Produk Inormasi Geospasial Mendukung Daya Saing Nasional, 14, 529–536.
Balew, A., & Korme, T. (2020). Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. Egyptian Journal of Remote Sensing and Space Science, 23(3), 371–386. https://doi.org/10.1016/j.ejrs.2020.02.001
BPS. (2020). Kota Surakarta dalam angka 2019. BPS (Badan Pusat Statistik) Kota Surakarta.
Danardono, Sunariya, M. I. T., Fikriyah, V. N., & Cholil, M. (2021). Spatiotemporal variation of terrestrial carbon sequestration in tropical urban area (Case study in Surakarta District, Indonesia). Quaestiones Geographicae, 40(3), 5–20. https://doi.org/10.2478/quageo-2021-0020
Deng, Z., Zhu, X., He, Q., & Tang, L. (2019). Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Advances in Space Research, 63(7), 2144–2154. https://doi.org/10.1016/j.asr.2018.12.005
Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667–678. https://doi.org/10.1080/22797254.2018.1474494
Hadeel, A. S., Jabbar, M. T., & Chen, X. (2009). Application of remote sensing and GIS to the study of land use/cover change and urbanization expansion in Basrah province, Southern Iraq. Geo-Spatial Information Science, 12(2), 135–141. https://doi.org/10.1007/s11806-009-0244-7
Hadibasyir, H. Z., Rijal, S. S., & Sari, D. R. (2020). Comparison of land surface temperature during and before the emergence of Covid-19 using Modis Imagery in Wuhan City, China. Forum Geografi, 34(1), 1–15. https://doi.org/10.23917/forgeo.v34i1.10862
Hidayati, I. N., Suharyadi, & Danoedoro, P. (2017). Pemetaan lahan terbangun perkotaan menggunakan pendekatan NDBI dan segmentasi semi-automatik. Prosiding Seminar Nasional Geografi UMS 2017, 19–28.
Hidayati, I. N., & Suharyadi, R. (2019). A comparative study of various indices for extraction urban impervious surface of Landsat 8 OLI. Forum Geografi, 33(2), 162–172. https://doi.org/10.23917/forgeo.v33i2.9179
Imran, H. M., Hossain, A., Islam, A. K. M. S., Rahman, A., Bhuiyan, M. A. E., Paul, S., & Alam, A. (2021). Impact of land cover changes on land surface temperature and human thermal comfort in Dhaka City of Bangladesh. Earth Systems and Environment, 5(3), 667–693. https://doi.org/10.1007/s41748-021-00243-4
Kabisch, N., Selsam, P., Kirsten, T., Lausch, A., & Bumberger, J. (2019). A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes. Ecological Indicators, 99(July 2018), 273–282. https://doi.org/10.1016/j.ecolind.2018.12.033
Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29(4–5), 421–469. https://doi.org/https://doi.org/10.1007/s10712-008-9037-z
Kumari, B., Tayyab, M., Shahfahad, Salman, Mallick, J., Khan, M. F., & Rahman, A. (2018). Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sensing in Earth Systems Sciences, 1(3–4), 63–78. https://doi.org/10.1007/s41976-018-0004-2
Macarof, P., Bîrlica, I. C., & Stătescu, F. (2017). Investigating the relationship between land surface temperature and urban indices using landsat-8: a case study of Iaşi. Lucrările Seminarului Geografic “Dimitrie Cantemir,†45(0), 81–88. https://doi.org/10.15551/lsgdc.v45i0.07
Malik, M. S., Shukla, J. P., & Mishra, S. (2019). Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian Journal of Geo-Marine Sciences, 48(1), 25–31.
Naserikia, M., Shamsabadi, E. A., Rafieian, M., & Filho, W. L. (2019). The urban heat island in an urban context: A case study of Mashhad, Iran. International Journal of Environmental Research and Public Health, 16(3). https://doi.org/10.3390/ijerph16030313
Osgouei, P. E., Kaya, S., Sertel, E., & Alganci, U. (2019). Separating built-up areas from bare land in mediterranean cities using Sentinel-2A imagery. Remote Sensing, 11(3), 1–24. https://doi.org/10.3390/rs11030345
Putri, P., & Zain, A. F. (2010). Analisis spasial dan temporal perubahan luas ruang terbuka hijau di kota Bandung. Jurnal Lanskap Indonesia, 2(2), 115–121. https://doi.org/https://doi.org/10.29244/jli.2010.2.2.%p
Ratner, B. (2009). The correlation coefficient: Its values range between 1/1, or do they. Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139–142. https://doi.org/10.1057/jt.2009.5
Rushayati, S. B., Shamila, A. D., & Prasetyo, L. B. (2018). The role of vegetation in controlling air temperature resulting from urban heat island. Forum Geografi, 32(1), 1–11. https://doi.org/10.23917/forgeo.v32i1.5289
Srivanit, M., & Hokao, K. (2009). Thermal infrared remote sensing for urban climate and environmental studies: An Application for the City of Bangkok, Thailand. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344. https://doi.org/10.1016/j.isprsjprs.2009.03.007
USGS EROS. (2018). USGS EROS Archive - Landsat Archives - Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products. Usgs, 2014.
Wiweka, W. (2014). Pola suhu permukaan dan udara menggunakan citra satelit Landsat Multitemporal. Jurnal Ecolab, 8(1), 11–22. https://doi.org/10.20886/jklh.2014.8.1.11-22
Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sensing, 4(7), 2033–2056. https://doi.org/10.3390/rs4072033
Yin, S., Liu, J., & Han, Z. (2022). Relationship between urban morphology and land surface temperature—A case study of Nanjing City. PLoS ONE, 17(2 February), 1–17. https://doi.org/10.1371/journal.pone.0260205
Yuliastuti, N., Sudarto, J. P. H., & Semarang, S. H. T. (2012). Pengaruh perkembangan lahan terbangun terhadap kualitas lingkungan permukiman (Studi kasus: Kawasan pendidikan kelurahan tembalang). Jurnal Presipitasi: Media komunikasi dan pengembangan teknik lingkungan, 9(1), 10–16.
Zhang, J., Wang, Y., & Li, Y. (2006). A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Computers and Geosciences, 32(10), 1796–1805. https://doi.org/10.1016/j.cageo.2006.05.001