Evaluating the combustion process of methane fired cross draft ceramic kiln for efficiency and sustainability

Main Article Content

Ezra Abubakar
Sunday Mbidomti
Mary Lawan
Nasruddeen Abubakar

Abstract

Sustainable ceramic production is not only dependent on the adoption of renewable fuel, but also on combustion proficiency, efficient fuel utilization, and thermal energy released. This study reports on the thermal evaluation of a cross-draft ceramic kiln, with a view to determine the efficiency of the combustion process. The methodology involved firing the kiln to determine the equivalent ratio, stoichiometric air-methane ratio, enthalpy of formation of reactants and products, and the thermal energy liberated from the firing process. The results indicated that: 1000°C is attainable in 7 hours and 30 min at a firing rate of 136.97 sec/°C, fuel consumption rate of 1L/61.6 sec and average temperature of 613.4°C. The results also showed that, enthalpies of formation of products and reactants of -74,897 and -557,376.843 were generated at air-methane equivalent ratio of 1 : 5 and stoichiometric ratio of 9.818. This translated to 57.18% of air available for the combustion process and a 42.82% deficiency. The study concluded that though the combustion process of the methane fired kiln was weak, resulting in thermal energy loss of 39.9%, there was an energy utilization of up to 60.1%.

Article Details

How to Cite
Abubakar, E., Mbidomti, S. ., Lawan, M. ., & Abubakar, N. (2023). Evaluating the combustion process of methane fired cross draft ceramic kiln for efficiency and sustainability. Sustinere: Journal of Environment and Sustainability, 7(1), 27–38. https://doi.org/10.22515/sustinerejes.v7i1.284
Section
Articles

References

Abubakar, E., & Sadiq, Y.O. (2018). The Potential of Biogas as Fuel for High Temperature Ceramic Kiln Firing. FUTY Journal of Environment, 2 (12), pp. 9-133 www.ajol.info/index.php/fje/issue/archive.ISBN:15978826

Abubakar, E., Shariff, R. M., & Sadiq, Y. O. (2022). Deployment of treated and compressed biogas as a sustainable fuel for ceramic kiln firing. Journal of Environment and Sustainability, 6(1), pp. 14-25.DOI: https://doi.org/10.22515/sustinere.jes.v6i1.192

Ayatz, A., Jimenez, E., & Cabre, J. (2007). Energy recovery of biogas generated in landfill for manufacture of high quality ceramic product. Energy Recovery of Biogas Generated in Landfills for Manufacturing High Quality Ceramic Products. Proceedings Sardinia Margherita Di Pula, 1(5), pp. 1–7.

Bandyopadhyay, S., & Desai, N. B. (2016). Cost optimal energy sector planning: A pinch analysis approach. Journal of Clean Production, 136, pp. 246-253 DOI: https://doi.org/10.1016/j.jclepro.2016.03.077

Blake, D. R., & Rowland F. S. (1995). Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality, Science, 269(5226), pp.953-956. www.googlescholar.com

Buis, A. (2019). The atmosphere: Getting a handle on carbon dioxide. Retrieved from https://climate.nasa.gov.news. Accessed on 6 May, 2022.

Caillat, S. and Vakkilainen, E. (2013). Biomass combustion science technology and engineering. Retrieved from https://doi.org/101533/9780857097439.3.189. Accessed February 6, 2022

Cantore, G., Milan, M., Montorsi, L., & Paltrinieri, F. (2018). Energy efficiency analysis of an entire ceramic kiln: A numerical approach, Modelling Measurement and Control B, 87(3), pp. 159 -166. https://doi.org/10.18280/mmc_b.870307

Chang, Y., Wei, Y., Zhang, J., Xu, X., Zhang, l., & Zhao, Y. (2021). Mitigating the greenhouse gas emissions from urban roadway lighting in China via energy-efficient luminaire adoption and renewable energy utilization. Resources, Conservation and Recycling, 164, 105197

Choi, Y., Lee, C., & Song, J. (2017). Renewable energy technologies utilized in the oil and gas industry. International Journal of Renewable Energy Research, 7(2), pp.592-598. www.researchgate.net

Chuenwong, K., Chiarakom, S., & Sajjakulnukit, B. (2017). Specific energy consumption and carbon intensity of ceramic tableware: small enterprises (SEs) in Thailand. Journal of cleaner production, 147, pp. 395-405.

Cudahy, J. J., & Helsel. R. W. (2000). Removal of products of incomplete combustion with Carbon. Waste Management, 20(5-6), pp.339-315. https://doi.org/10.1016/-0956-053x(99)003335-9.

Couvidat, F., Lopez-Aparicio, S., Schucht, S., Real, E., Grythe, H. (2021). Development of renewable energy and its impact on air quality: co-benefits and trade-offs. Retrieved from https://www.eionet.europa.eu . Accessed March 4, 2023.

Connolly. D., Vad mathiesen, B., & Ridjan, I. (2014). A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 73, pp. 110-125.

Delpech, B., Milani, M., Montorsi, L., Boscradin, D., Chaucham, A., Almahmound, S., Axcell, B., Jouhara, H. (2018). Energy efficiency enhancement and waste heat recovery in industrial process by means of the heat pipe technology: case of ceramic industry. Energy, 158, pp. 656-665

Elrahmani, A., Hannun, J. & Eljack, F. (2020). Status of renewable energy in GCC region and future opportunities, Current Options in Chemical Engineering, 31, 100664. https://doi.org/10.1016/j.coche.2020.100664

Ewelukwa, G. O. (2003). Calculatuion in physics for secondary schools. Africana-First Publishers Limited, Onitsha, Nigeria.

Fernandez, L. (2023). Global wood fuel production 2000.2021. Retrieved from www.statita.com . Accessed March 3, 2023.

Fiehl, M., Leicher, J., Giese, A., Gomer, A., Fleischmann, K., & Spielmann, B. S. (2017). Biogas as a co-firing fuel in thermal processing industries: Implementation in glass melting furnace. Energy Proceedings, Vol. 120, pp. 302-308. Doi: 10.1016/j.egypro.2017.07.221

Franzitta, V., Curto, D., Milone, D., Trapanese, M., (2017). Energy saving in public transport using renewable energy, Sustainability, 9 (1), 106.

Ghasemzadeh, K., S. Tilebon, S. M. S., Nasirinezhad, M., & Basile, A. (2018). Methanol, Science and Engineering. Chapter title, Economic assessment of methane production. pp. 613-632. https://doi.org/10.1016/b978-0-444-63903-5.00023.6

Gomez, R. S., Porto, T. R. N., Magalhaes, H. L. F., Moreira, G., Andre, A. M. M. C. N., Melo, R. B. F., & Lima, A. G. B. (2019). Natural gas intermittent kiln for the ceramic industry: A Transient thermal analysis, Ener., 12, (8), 1568, DOI:10.3390/en12081568

Hussain, S. A., Farooq, M., Amjad, M., Riaz, F., Tahir, Z. U. R., Sultan, M., Hussain, I., Shakir, M. A., Qyyum, M. A., & Han, N. (2021). Thermal analysis and energy efficiency improvements in tunnel kiln for a sustainable environment, Proce., 9(9), pp. 1692, doi: https://doi.org/10.3390/pr9091629

IEA (2021).Global Energy Review: CO2 Emissions in 2021. Retrieved from https//iea.org/reports/global-energy. Accessed January 8, 2021

Jaffee, C. S. (2012). Ambient carbon monoxide and its fate in the atmosphere, Journal of air Pollution Control Association,18(18), pp. 534-540 https://doi.org/10.1080/00022470.1968.10469168

Johnson, L. S., Leckner, B., Gustavsson, L., Copper, D., Tullin, C., & Potter, A. (2004). Emission characteristics of old and modern type residential boilers fired with wood logs and wood pellets, Atmospheric Environment, 38, pp. 4183-4195

Koohestanian, E., & Shahraki, F. (2021). Review on principles, recent progress, and challenges for oxy-fuel combustion CO2 capture using compression and purification unit, Journal of Environmental and Chemical Engineering, 9(3), 105777. https://doi.org/10.1016/j.jece.2021. 105777

Kumari, P., Krishan, R., & Sharma, L. K. (2015). Energy-efficient tunnel kilns with superlative firing atmosphere for ceramic industries, International Journal of Innovation, Science, Engineering and Technology, 2(7), pp. 588-590.

Kummitha, O. R. (2023). Parametric study of the ceramic roller hearth kiln combustion chamber with pre-heated air from the kiln flue gas, Fuel. 331(1), pp. 125789. Doi. https://doi.org/10.1016/j/fuel.2022.125785

Le. K. A. (2018). Optimization of energy usage in a ceramic kiln using pinch technique, Chemical Engineering Transactions, Vol. 63, pp. 313-318. Doi: https://doi.org/10.3303/CET1863053

Mezquita, A., Boix, J., Monfort, B. E. & Mallol, G. (2014). Energy-saving in ceramic tile kilns: Cooling gas heat recovery, Appl. Therm. Eng., 65(1-2), pp.102-110 Doi: https://doi.org.10.1016/j.applthermaleng.2014.01.002

Monfort, E., Mezquita, A., Granel, R., Vanquer, E., Escrig, A., Miralles, A., and Zaera, V. (2010). Analysis of energy consumptions and carbon dioxide emissions in ceramic tile manufacture, Boletin de la Sociedad Espanola de Ceramica y Vid., 49(4), pp. 1-15 https://www.qualicers.org/

Oliveira, M. C., Iten, M., Cruz, L. P., & Monteiro, H. (2020). Review on energy efficiency progresses, technologies, and strategies in the ceramic sector focusing on waste heat recovery, Energy, 13(22), 6096. DOI: 10.3390/en13226096

Olsen, F. L. (2001). The kiln Book: material specifications and construction. Krause publications. Iola

O’Reilly, K., & Jeswiet, J. (2014). Improving industrial energy efficiency through the implementation of waste heat recovery systemsâ€, Transactions-Canadian Society for Mechanical Engineering, 39(1), pp. 125-136. Doi:10.1139/tcsme-2015-0010

Payne, R., Chen, S. L., Wolsky, A. M., & Richter, W.T. (2007). CO2 recovery via coal combustion in mixtures of oxygen and recycled flue gas, Combustion Science and Technology, 67(1-3), pp. 1-16. https://doi.org/10.1080/00102208908924054.

Plesu, V., Puicasas, J. S., Surroca, G. B., Bonet, J., Ruiz, A. E. B. A., & Tuluc, J. L. (2015). Process intensification in biodiesel production with energy reduction by pinch analysis, Energy, 79, pp. 273-287. Doi: https://10.1016/j.energy.2014.11.013

Pourkiaei, S. M., Pourfayaz, F., Shirmohammadia, R., Moosavi, S., & Khalipoor, N. (2021). Potential,current status and application of renewable energy in energy sector in Iran: A review, Renewable Energy Research and Applications, 2(1), pp. 25-89. Doi.10.22044/RERA.2020.8841.1008

Rogoff, J., & Screve, F. (2011). Waste to energy technologies and project implementation: permitting issues. Retrieved from https://doi.org/10.1016/8978-1-4377-7871-1.10008-5 . Accessed May 6, 2022

Sadiq, Y.O. (2004). Exploration and adoption of biogas to ceramic kilns. Abubakar Tafawa Balewa University Bauchi. Unpublished PhD thesis

Saponelli, R., Milani, M., Montorsi, L., Rimini, B., Venturelli, M., Stendardo, S., & Barbarossa, V. (2019). A novel carbon capture and utilization concept applied to the ceramic industry. E3S Web Conference 116,00069,2019. https://doi.org/10.1051/e3sconf/201911600069

Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M., Remirez-Santa Cruz, C., Handler, M., Peng, G., Bauer, H., & Puxbaum, H. (2011). Particulate and gaseous emissions from manually and automatic fired small scale combustion system, Atmospheric Environment, 45, pp. 7443-7454

Shah, D. R., & Nagarsheth, P. H. J. (2015). Biogas Up Gradation using Water Scrubbing for its use in Vehicular Applications. Issn, 2(6).

Sheth, P.N., & Babu, B.V. (2009). Experimental studies on producer gas generation from wood waste in downdraft biomass gasifier, Bio resources Technology, 100(12), pp.3127-3133. Doi. https://doi.org/10.1016/jbiotech.2009.01.024

Sinton C. W. (2015). Is there a place for renewable energy in ceramics, glass manufacturing? American Ceramic Society Bulletin, 84(10), pp. 18-22.

Sulaiman, C., & Abudul-Rahim, A. S. (2022). Relationship between wood fuel energy consumption and forest degradation at regional and sub-regional level of sub-Saharan Africa, Environmental and Pollution Research, 29, pp. 74512-74525

Sun, M., Huang, X., Zhao, Y., Zhang, P., & Zhou, Y. (2021). Design of A Partially Premixed Burner for Biogas-Fired Wall-Mounted Boiler, International Journal of Low-Carbon Technologies, 16(1). https://doi.org/10.1093/ijlct/ctaa055

Thomas, N. (2003). Combustion and co-combustion of biomass: fundamentals, technologies and primary measures for emission reduction, Energy & Fuels, 17 (6), pp. 1510-1521 https://doi.org/10,1021/ef0300319.

United Nations Environmental Program {UNEP}, (2019). A review of wood fuel biomass production and utilization in Africa. Retrieved from http://www.unep.org. Access February 27, 2023.

United Nations Industrial Development Organization {UNIDO} (2021). Handy Manual on Energy Conservation in Ceramic Industry. Retrieved from http://portalcdi.mecon.gov.ar Accessed October 10, 2021.

We, H. M., Yang, W. H., & Chou, C. W. (2012). Renewable energy supply chain, performance, application barriers and strategies for further development, Renewable and Sustainable Energy Review, 16(8), pp. 5451-5465. https://doi.org/10.1016/j.rser.2012.06.006

Winterbone, D. E. (1997). Advanced thermodynamics for Engineers Cambridge, UK: Butterworth-Heinemann.

WHO (2021). Indoor Air Pollution and Household Energy. Retieved from https://www.who.int. Accessed August 10, 2020.

Zhang, Q., Huang, Y., Chen, H. S. Y., Chen, H., Huang, T., Zeng, H. E., & Tao, S. (2017). Global estimate of carbon monoxide emission from 1960-2013, Environmental Science and Pollution Reseach, 24, pp. 867-873