Techno-economic needs assessment for a sustainable novel solar panel production system

Main Article Content

Paul Ogheneochuko Ohwofadjeke

Abstract

Techno-economic needs assessment for an automated solar panel production system is presented. Solar energy, a rapidly growing renewable energy source, has the potential to meet a significant portion of the world's energy needs. Solar panels, the key component of solar energy systems, there are produced in a major industry. Automated solar panel production systems offer the potential to increase production efficiency and reduce costs. The study outlines key factors necessary for successful establishment and operation of an automated solar panel production factory, including market analysis, financial projections, operational strategies, and sustainability initiatives. The market analysis through examination global trends in the solar energy market, identifying growth trends, potential competitors, and target customer segments. The study used a five-step methodology to assess needs, identifying major requirement such as the application of high-speed and precision manufacturing equipment, investment in reliable and efficient manufacturing processes, and development of cost-effective manufacturing methods. The study’s results highlight several key economic benefits of automated solar panel production, including increased production efficiency, reduced labor costs, and improved product quality. The findings are valuable to various stakeholders, including government officials, business leaders, and community members, informing decisions regarding solar industry development and new manufacturing facilities in specific regions. The paper recommends the use of eco-friendly manufacturing processes, utilization of recyclable materials, and adoption of energy-efficient automated technologies to minimize the carbon footprint of solar panel production.

Article Details

How to Cite
Ohwofadjeke, P. O. (2024). Techno-economic needs assessment for a sustainable novel solar panel production system. Sustinere: Journal of Environment and Sustainability, 8(1), 29–43. https://doi.org/10.22515/sustinere.jes.v8i1.362
Section
Articles

References

Adigio, E. ., & Ohwofadjeke, P. (2016). Exergy and energy analysis of Niger Delta University power plant. Ideal Journal of Engineering and Applied Sciences, 2(5), 173–177.

Akram, M. W., Li, G., Jin, Y., Zhu, C., Javaid, A., Akram, M. Z., & Khan, M. U. (2020). Study of manufacturing and hotspot formation in cut cell and full cell PV modules. Solar Energy, 203, 247–259. https://doi.org/10.1016/j.solener.2020.04.052

Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment, 822, 153645. https://doi.org/10.1016/j.scitotenv.2022.153645

Alsharif, A., Ahmed, A., Khaleel, M., Hebrisha, H., Almabsout, E., Abou Sif, M., & Al-Naas, Y. (2023). Applications of Solar Energy Technologies in North Africa: Current Practices and Future Prospects. Int. J. Electr. Eng. And Sustain., 1(3), 164–173.

Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Solomon, A., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., Souza, L. De, Simas, N., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. https://doi.org/10.1016/j.energy.2021.120467

Chen, N., Tune, D., Buchholz, F., Roescu, R., Zeman, M., Isabella, O., & Mihailetchi, V. D. (2023). Stable passivation of cut edges in encapsulated n-type silicon solar cells using Nafion polymer. Solar Energy Materials and Solar Cells, 258, 112401. https://doi.org/ 10.1016/j.solmat.2023.112401

Fahle, S., Prinz, C., & Kuhlenkötter, B. (2023). Systematic review on machine learning (ML) methods for manufacturing processes – Identifying artificial intelligence (AI) methods for field application. Procedia CIRP, 93, 413–418. https://doi.org/10.1016/j.procir.2020.04.109

Gorjian, S., Minaei, S., MalehMirchegini, L., Trommsdorff, M., & Shamshiri, R. R. (2020). Chapter 7 - Applications of solar PV systems in agricultural automation and robotics. In S. Gorjian & A. B. T.-P. S. E. C. Shukla (Eds.), Photovoltaic Solar Energy Conversion (pp. 191–235). Academic Press. https://doi.org/10.1016/B978-0-12-819610-6.00007-7

He, W., King, M., Luo, X., Dooner, M., Li, D., & Wang, J. (2021). Advances in Applied Energy Technologies and economics of electric energy storages in power systems : Review and perspective. Advances in Applied Energy, 4(July), 100060. https://doi.org/10.1016/j.adapen.2021.100060

Huang, Z., Shen, Y., Li, J., Fey, M., & Brecher, C. (2021). A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. In Sensors (Vol. 21, Issue 19, p. 6340). https://doi.org/10.3390/s21196340

IPCC. (2021). Climate Change 2021 – The Physical Science Basis (V. Masson-Delmotte & P. Zhai (eds.)). https://doi.org/10.1017/9781009157896

Jiang, H., Yao, L., Lu, N., Qin, J., Liu, T., Liu, Y., & Zhou, C. (2021). Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery. Earth System Science Data, 13(11), 5389–5401. https://doi.org/10.5194/essd-13-5389-2021

Kumar, C. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V, Kumar, T. M. A., Rout, P. K., Chanotiya, C. S., Pakhale, V. D., & Nannaware, A. D. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55, 102905. https://doi.org/10.1016/j.seta.2022.102905

Kumar, S., Meena, R., & Gupta, R. (2021). Finger and interconnect degradations in crystalline silicon photovoltaic modules: A review. Solar Energy Materials and Solar Cells, 230, 111296. https://doi.org/10.1016/j.solmat.2021.111296

Ledmaoui, Y., El, A., El, M., Saadane, R., Chebak, A., & Chehri, A. (2023). Forecasting solar energy production : A comparative study of machine learning algorithms. Energy Reports, 10, 1004–1012. https://doi.org/10.1016/j.egyr.2023.07.042

Lu J, Tang Y, Li Z, He G (2021) Solar Heat Pump Configurations for Water Heating System in China. Appl Therm Eng 187. https://doi.org/10.1016/j.applthermaleng.2021.116570

Mani, Z. A., & Goniewicz, K. (2023). Adapting Disaster Preparedness Strategies to Changing Climate Patterns in Saudi Arabia: A Rapid Review. In Sustainability (Vol. 15, Issue 19). https://doi.org/10.3390/su151914279

Min, H., Kim, M., Lee, S.-U., Kim, H., Kim, G., Choi, K., Lee, J. H., & Seok, S. Il. (2019). Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 366(6466), 749–753. https://doi.org/10.1126/science.aay7044

Myyas, R. N., Al-Dabbasa, M., Tostado-Véliz, M., & Jurado, F. (2022). A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Solar Energy, 237, 19–28. https://doi.org/10.1016/j.solener.2022.03.068

Nazir, S., Ali, A., Aftab, A., Muqeet, H. A., Mirsaeidi, S., & Zhang, J.-M. (2023). Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review. In Energies (Vol. 16, Issue 13, p. 4959). https://doi.org/10.3390/en16134959

Nguyen, X. P., Le, N. D., Pham, V. V., Huynh, T. T., Dong, V. H., & Hoang, A. T. (2021). Mission, challenges, and prospects of renewable energy development in Vietnam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–13. https://doi.org/10.1080/15567036.2021.1965264

Nishtar, Z., & Afzal, J. (2023). History of Emerging Trends of Renewable Energy for Sustainable Development in Pakistan. Journal of History and Social Sciences, 14(1), 126–139.

Oudes, D., Brink, A. Van Den, & Stremke, S. (2022). Energy Research & Social Science Towards a typology of solar energy landscapes : Mixed-production , nature based and landscape inclusive solar power transitions. Energy Research & Social Science, 91, 102742. https://doi.org/10.1016/j.erss.2022.102742

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990

Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., & Romeo, A. (2020). Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 110, 100619. https://doi.org/10.1016/j.pmatsci.2019.100619

Shahbazi, Z., & Byun, Y.-C. (2021). Integration of Blockchain, IoT and Machine Learning for Multistage Quality Control and Enhancing Security in Smart Manufacturing. In Sensors (Vol. 21, Issue 4, p. 1467). https://doi.org/10.3390/s21041467

Sharma, V. K., Singh, R., Gehlot, A., Buddhi, D., Braccio, S., Priyadarshi, N., & Khan, B. (2022). Imperative Role of Photovoltaic and Concentrating Solar Power Technologies towards Renewable Energy Generation. International Journal of Photoenergy, 2022, 3852484. https://doi.org/10.1155/2022/3852484

Su, X., Xu, Z., Tian, S., Chen, C., Huang, Y., Geng, Y., & Chen, J. (2023). Life cycle assessment of three typical solar energy utilization systems in different regions of China. Energy, 278, 127736. https://doi.org/10.1016/j.energy.2023.127736

Swartwout, R., Hoerantner, M. T., & Bulović, V. (2019). Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Energy & Environmental Materials, 2(2), 119–145. https://doi.org/10.1002/eem2.12043

Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid : A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591

Torrado, M. C. (2023). Addressing Critical Funding Needs of Private Tertiary Education Institutions and Students in Kenya: A Market Study and Intervention Design. The European Business University of Luxembourg

Wilson, G. M., Al-jassim, M., Metzger, W. K., Glunz, S. W., Verlinden, P., Xiong, G., Mansfield, L. M., Stanbery, B. J., Zhu, K., Yan, Y., Berry, J. J., Ptak, A. J., Dimroth, F., Kayes, B. M., Tamboli, A. C., Peibst, R., Catchpole, K., Reese, M. O., Klinga, C. S., … Sulas-kern, D. B. (2020). The 2020 photovoltaic technologies roadmap. Journal of Physics D: Applied Physics, 53, 493001. https://doi.org/10.1088/1361-6463/ab9c6a

Xia, C., Pan, Z., Polden, J., Li, H., Xu, Y., Chen, S., & Zhang, Y. (2020). A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. Journal of Manufacturing Systems, 57, 31–45. https://doi.org/10.1016/j.jmsy.2020.08.008

Zhang, X., Liu, P., Li, Z., & Yu, H. (2013). Modeling the effects of low-carbon emission constraints on mode and route choices in transportation networks. Procedia-Social and Behavioral Sciences, 96, 329–338. https://doi.org/10.1016/j.sbspro.2013.08.040