Adsorption of iron and manganese from acid mine drainage by zalacca (Salacca zalacca) peel- activated carbon

Main Article Content

Eka Anifah
Ismi Khairunnissa Ariani
Janet Tio Panny Tindaon
Basransyah

Abstract

The low pH and high metal concentration in acid mine drainage cause environmental problems and affect human health. Adsorption not only removes the pollutants but also increases pH levels. Natural adsorbents have gained attention because of their widespread availability, low cost, and effectiveness. Zalacca peel waste is among the biomass materials showing promise as activated carbon for removing contaminants from acid mine drainage. This study aims to investigate the adsorption capacity of activated carbon from zalacca peel for removing iron and manganese from acid mine drainage. Adsorption studies were conducted in batch experiments using various dosages and contact times. Optimal results were achieved with a dosage of 0.8 grams per 100 mL and contact time of 60 minutes, resulting in 80% removal efficiency for iron and 24% for manganese. The neutralization process occurred post-adsorption, bringing the final pH close to neutral levels, suitable for environmentally safe discharge. Experiment data were fitted to the Freundlich isotherm and pseudo-second order kinetics. FTIR analysis revealed functional groups including C-H, C-O, and C=C was found in the adsorbent. Furthermore, surface area and pore volume experienced slight increases following activation with KOH.

Article Details

How to Cite
Anifah, E., Ariani, I. K., Tindaon, J. T. P., & Basransyah. (2024). Adsorption of iron and manganese from acid mine drainage by zalacca (Salacca zalacca) peel- activated carbon . Sustinere: Journal of Environment and Sustainability, 8(1), 44–53. https://doi.org/10.22515/sustinere.jes.v8i1.366
Section
Articles
Author Biographies

Ismi Khairunnissa Ariani, Department of Environmental Engineering, Institut Teknologi Kalimantan, Indonesia

Department of Environmental Engineering,

Janet Tio Panny Tindaon, Department of Environmental Engineering, Institut Teknologi Kalimantan, Indonesia

Department of Environmental Engineering

Basransyah, Department of Environmental Engineering, Institut Teknologi Kalimantan, Indonesia

Department of Environmental Engineering

References

Adekola, F. A., Hodonou, D. S. S., & Adegoke, H. I. (2016). Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash. Applied Water Science, 6(4). https://doi.org/10.1007/s13201-014-0227-1

Ali, M. E. A., Aboelfadl, M. M. S., Selim, A. M., Khalil, H. F., & Elkady, G. M. (2018). Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Separation Science and Technology (Philadelphia), 53(18). https://doi.org/10.1080/01496395.2018.1489845

Anggriani, U. M., Hasan, A., & Purnamasari, I. (2021). Kinetika Adsorpsi Karbon Aktif Dalam Penurunan Konsentrasi Logam Tembaga (Cu) dan Timbal (Pb). Jurnal Kinetika, 12(2).

Anshariah, A. (2016). Studi Pengelolaan Air Asam Tambang Pada Pt. Rimau Energy Mining Kabupaten Barito Timur Provinsi Kalimantan Tengah. Jurnal Geomine, 1(1), 46–54. https://doi.org/10.33536/jg.v1i1.9

Arifin, U. R. S., Jadid, M. M. E., & Widiono, B. (2023). Pengolahan Limbah Air Asam Tambang Emas Dengan Proses Netralisasi Koagulasi Flokulasi. DISTILAT: Jurnal Teknologi Separasi, 5(2), 112–120. https://doi.org/10.33795/distilat.v5i2.42

Bijang, C. M., Nurdin, M., Tehubijulluw, H., Fransina, E. G., Uyara, T., & Suarti. (2019). Application of Ouw natural clay activated acid and base as adsorbent of Rhodamine B dye. Journal of Physics: Conference Series, 1242(1). https://doi.org/10.1088/1742-6596/1242/1/012014

Bin Jusoh, A., Cheng, W. H., Low, W. M., Nora’aini, A., & Megat Mohd Noor, M. J. (2005). Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, 182(1–3), 347–353. https://doi.org/10.1016/j.desal.2005.03.022

Burakov, A. E., Galunin, E. V, Burakova, I. V, Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

Busyairi, M., Firlina, F., Sarwono, E., & Saryadi, S. (2019). Pemanfaatan Serbuk Kayu Meranti Menjadi Karbon Aktif Untuk Penurunan Kadar Besi (Fe), Mangan (Mn) Dan Kondisi Ph Pada Air Asam Tambang. Jurnal Sains &Teknologi Lingkungan, 11(2), 87–101. https://doi.org/10.20885/jstl.vol11.iss2.art1

Can, N., Ömür, B. C., & Altındal, A. (2016). Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors and Actuators, B: Chemical, 237. https://doi.org/10.1016/j.snb.2016.07.026

Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. In Chemosphere (Vol. 307). https://doi.org/10.1016/j.chemosphere.2022.135545

Erani, F. S., Hasan, A., & Purnamasari, I. (2022). Kinetika Adsorpsi Logam Cu dan Zn pada Limbah cair Kelapa Sawit Menggunakan Membran Silika. KINETIKA, 13(03), 31–36.

Esmaeili, A., Mobini, M., & Eslami, H. (2019). Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Applied Water Science, 9(4). https://doi.org/10.1007/s13201-019-0977-x

Fatimah, I., Sahroni, I., Dahlyani, M. S. E., Oktaviyani, A. M. N., & Nurillahi, R. (2020). Surfactant-modified Salacca zalacca skin as adsorbent for removal of methylene blue and Batik’s wastewater. Materials Today: Proceedings, 44. https://doi.org/10.1016/j.matpr.2020.11.440

Fatmawati, N., Usman, T., & Zahara, T. A. (2019). Bioadsorpsi Fe(II) oleh Kulit Buah Jeruk Citrus nobilis Lour. var microcarpa Termodifikasi Ca(OH)2. Indonesian Journal of Pure and Applied Chemistry, 1(3). https://doi.org/10.26418/indonesian.v1i3.34205

Hamayun, M., Mahmood, T., Naeem, A., Muska, M., Din, S. U., & Waseem, M. (2014). Equilibrium and kinetics studies of arsenate adsorption by FePO4. Chemosphere, 99. https://doi.org/10.1016/j.chemosphere.2013.10.075

Hanifah, H. N., & Hadisoebroto, G. (2021). Perbandingan Efektivitas Bioadsorben Berbagai Serbuk Kulit Buah Terhadap Logam Pb Dari Limbah Cair Laboratorium Farmasi. Al-Kimia, 9(2), 188–200. https://doi.org/10.24252/al-kimia.v9i2.24660

Hasan, A., Yerizam, M., & Habib Yahya, M. (2021). Mekanisme Adsorben Zeolit dan Manganese Zeolit Terhadap Logam Besi (Fe). Jurnal Kinetika, 12(01).

Hasanah, M., Wijaya, A., Arsyad, F. S., Mohadi, R., & Lesbani, A. (2022). Preparation of Hydrochar from Salacca zalacca Peels by Hydrothermal Carbonization: Study of Adsorption on Congo Red Dyes and Regeneration Ability. Science and Technology Indonesia, 7(3). https://doi.org/10.26554/sti.202S2.7.3.372-378

Iakovleva, E., Mäkilä, E., Salonen, J., Sitarz, M., Wang, S., & Sillanpää, M. (2015). Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81. https://doi.org/10.1016/j.ecoleng.2015.04.046

Iftekhar, S., Ramasamy, D. L., Srivastava, V., Asif, M. B., & Sillanpää, M. (2018). Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. Chemosphere, 204(April), 413–430. https://doi.org/10.1016/j.chemosphere.2018.04.053

Imani, A., Sukwika, T., & Febrina, L. (2021). Karbon Aktif Ampas Tebu sebagai Adsorben Penurun Kadar Besi dan Mangan Limbah Air Asam Tambang. Jurnal Teknologi, 13(1), 33–42. https://doi.org/10.24853/jurtek.13.1.33-42

Indah, S., Helard, D., & Yedriana, R. (2016). Pengaruh Variasi Konsentrasi Logam Mangan (Mn) terhadap Efisiensi Penyisihan Logam Besi (Fe) pada Adsorpsi Menggunakan Serbuk Kulit Jagung Sebagai Adsorben. Jurnal Dampak, 13(2). https://doi.org/10.25077/dampak.13.2.100-106.2016

Indra, H., Lepong, Y., Gunawan, F., & Abfer-tiawan, M. S. (2014). Penerapan Metode Active dan Passive Treatmen dalam Pengelolaan Air Asam Tambang Site Lati. Jurnal Sylva Lestari, 1(1), 1–9.

Irawan, C., & Rumhayati, B. (2014). Adsorption of Iron(II) By Fly Ash Adsorbent from Coal. In J. Pure App. Chem. Res (Vol. 3, Issue 3).

Kampalanonwat, P., & Supaphol, P. (2014). The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats. Energy Procedia, 56(C). https://doi.org/10.1016/j.egypro.2014.07.142

Kaveeshwar, A. R., Ponnusamy, S. K., Revellame, E. D., Gang, D. D., Zappi, M. E., & Subramaniam, R. (2018). Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: Adsorption kinetics, isotherm and thermodynamic studies. Process Safety and Environmental Protection, 114. https://doi.org/10.1016/j.psep.2017.12.007

Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493. https://doi.org/10.1016/j.jclepro.2017.03.082

Le Van, K., Thu, T. L. T., Thu, H. N. T., & Van Hoang, H. (2019). Activated Carbon by KOH and NaOH Activation: Preparation and Electrochemical Performance in K2SO4 and Na2SO4 Electrolytes. Russian Journal of Electrochemistry, 55(9). https://doi.org/10.1134/S1023193519070115

Masukume, M., Onyango, M. S., & Maree, J. P. (2014). Sea shell derived adsorbent and its potential for treating acid mine drainage. International Journal of Mineral Processing, 133, 52–59. https://doi.org/10.1016/j.minpro.2014.09.005

Mosoarca, G., Vancea, C., Popa, S., Gheju, M., & Boran, S. (2020). Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74819-x

Núñez-Gómez, D., Lapolli, F. R., Nagel-Hassemer, M. E., & Lobo-Recio, M. Á. (2020). Optimization of Fe and Mn Removal from Coal Acid Mine Drainage (AMD) with Waste Biomaterials: Statistical Modeling and Kinetic Study. Waste and Biomass Valorization, 11(3). https://doi.org/10.1007/s12649-018-0405-8

Panda, H., Tiadi, N., Mohanty, M., & Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23. https://doi.org/10.1016/j.sajce.2017.05.002

Purnamaningsih, N., Retnaningrum, E., & Wilopo, W. (2017). Pemanfaatan Konsorsium Bakteri Pereduksi Sulfat dan Zeolit Alam dalam Pengendapak Logam Mn. Jurnal Penelitian Saintek, 22(1). https://doi.org/10.21831/jps.v22i1.15311

Rambabu, K., Banat, F., Pham, Q. M., Ho, S. H., Ren, N. Q., & Show, P. L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024

Sadegh, H., & Ali, G. A. M. (2018). Potential Applications of Nanomaterials in Wastewater Treatment. June, 51–61. https://doi.org/10.4018/978-1-5225-5754-8.ch004

Suliestyah, Novi Hartamai, P., Permata Sari, I., & Alexander, E. (2021). The Fe (II) and Mn (II) adsorption in acid mine drainage using various granular sizes of activated carbon and temperatures. IOP Conference Series: Earth and Environmental Science, 882(1). https://doi.org/10.1088/1755-1315/882/1/012065

Utama, S., Kristianto, H., & Andreas, A. (2016). Adsorpsi Ion Logam Kromium (Cr (Vi)) Menggunakan Karbon Aktif dari Bahan Baku Kulit Salak. Prosiding Seminar Nasional Teknik Kimia “Kejuangan,” 1–6.

Yan, H., Li, H., Tao, X., Li, K., Yang, H., Li, A., Xiao, S., & Cheng, R. (2014). Rapid removal and separation of iron(II) and manganese(II) from micropolluted water using magnetic graphene oxide. ACS Applied Materials and Interfaces, 6(12). https://doi.org/10.1021/am502377n

Yulianis, Y., Husna, R., Zulva, N. D. I., & Mahidin, M. (2022). Adsorpsi Ion Logam Fe3+ dalam Air Asam Tambang Menggunakan Nano Zeolit Alam. Indonesian Mining Professionals Journal, 4(1). https://doi.org/10.36986/impj.v4i1.51

Yushin, N., Zinicovscaia, I., Cepoi, L., Chiriac, T., & Mitina, T. (2019). Study of chemistry of CR(VI)/Cr(III) biosorption from batch solutions and electroplating industrial effluent using cyanobacteria spirulina platensis. Revue Roumaine de Chimie, 64(2). https://doi.org/10.33224/rrch/2019.64.2.07

Zhan, W., Xu, C., Qian, G., Huang, G., Tang, X., & Lin, B. (2018). Adsorption of Cu(ii), Zn(ii), and Pb(ii) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine. RSC Advances, 8(33). https://doi.org/10.1039/c8ra02055h

Zhang, Y., Zhao, J., Jiang, Z., Shan, D., & Lu, Y. (2014). Biosorption of Fe(II) and Mn(II) ions from aqueous solution by rice husk ash. BioMed Research International, 2014. https://doi.org/10.1155/2014/973095