Utilization of durian peels (Durio zibethinus) and lubricant treatment sludge as raw materials of Refuse-Derived Fuel

Main Article Content

Riza Hudayarizka
Umi Sholikah
Dini Tri Budiarti

Abstract

Fossil energy is among the most widely utilized energy sources in Indonesian industry, but its continuous use is leading to its depleted. Refuse-derived fuel (RDF) offers an alternative made from organic and inorganic waste. Durian peel is identified as a promising raw material for RDF due to its high calorific value of 6,274 Kcal/kg. Additionally, Lubricant Treatment Sludge (LTS), which is collected from the oil treatment industry, is used to enhance RDF’s calorific value, as it contains residual oil rich in hydrocarbons. To bind the RDF components, tapioca starch, durian seeds, and rejected papaya were selected as adhesives. The mixture ratios of durian skin, LTS, and adhesive were tested at compositions (90:0:10), (85:5:10), (80:10:10), (75:15:10), and (70:20:10). Subsequent RDF characteristics analyses included tests for moisture content, ash content, volatile matter, fixed carbon, and calorific value. Based on these evaluations, the most optimal composition was determined to be 90% durian peel, 0% LTS, and 10% tapioca starch adhesive. This composition exhibited a moisture content of 1.6%, volatile matter of 74.6%, ash content of 8.4%, fixed carbon of 15.2%, and a calorific value of 3,516 Kcal/kg. Tapioca starch emerged as preferred adhesive due to its favorable properties and characteristics.

Article Details

How to Cite
Hudayarizka, R., Sholikah, U., & Budiarti, D. T. (2024). Utilization of durian peels (Durio zibethinus) and lubricant treatment sludge as raw materials of Refuse-Derived Fuel. Sustinere: Journal of Environment and Sustainability, 8(1), 68–79. https://doi.org/10.22515/sustinere.jes.v8i1.370
Section
Articles

References

Almu, M. A., Syahrul, S., & Padang, Y. A. (2014). Analisa Nilai Kalor Dan Laju Pembakaran Pada Briket Campuran Biji Nyamplung (Calophyllm Inophyllum) Dan Abu Sekam Padi. Dinamika Teknik Mesin, 4(2), 117–122. https://doi.org/10.29303/d.v4i2.61

Alwathan, & Patmawati, Y. (2019). Pengaruh perbandingan batubara dengan kulit durian sebagai biobriket untuk energi alternatif dengan menggunakan metode karbonisasi. Seminar Nasional Penelitian & Pengabdian Kepada Masyarakat, 34–37.

Anggono, W., Sutrisno, Suprianto, F. D., Yulio Arifin, F. X., & Jeremy Gotama, G. (2020). Combustion Performance of Pterocarpus indicus Leaves Wastes Briquette with Rejected Papaya as Binding Agent. IOP Conference Series: Earth and Environmental Science, 581(1). https://doi.org/10.1088/1755-1315/581/1/012020

Breulmann, M., Afferden, M. van, A., R. M., Schulz, E., & Fuuhner, C. (2017). Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2017.01.026

Deglas, W., & Fransiska, F. (2020). Analisis perbandingan bahan dan jumlah perekat terhadap briket tempurung kelapa dan ampas tebu. Teknologi Pangan : Media Informasi Dan Komunikasi Ilmiah Teknologi Pertanian, 11(1), 72–78. https://doi.org/10.35891/tp.v11i1.1899

Dewi, R., Hasfita, F., Kimia, J. T., Teknik, F., Malikussaleh, U., Sukun, G., Jengkol, K., & Tapioka, T. (2016). Pemanfaatan Limbah Kulit Jengkol (Pithecellobium Jiringa) Menjadi Bioarang Dengan Menggunakan Perekat Campuran Getah Sukun Dan Tepung Tapioka. Jurnal Teknologi Kimia Unimal, 1, 105–123. https://doi.org/10.29103/jtku.v5i1.83

Djeni, H., & Saptadi, D. (2000). Pembuatan briket arang dari serbuk gergajian kayu dengan penambahan tempurung kelapa (pp. 1–9). Buletin Penelitian Hasil Hutan.

García, R., González-Vázquez, M. P., Rubiera, F., Pevida, C., & Gil, M. V. (2021). Co-pelletization of pine sawdust and refused derived fuel (RDF) to high-quality waste-derived pellets. Journal of Cleaner Production, 328. https://doi.org/10.1016/j.jclepro.2021.129635

Guangyin, Z., & Youcai, Z. (2017). Making of Sewage Sludge-Derived Controlled Low-Strength Materials (CLSMs). Pollution Control and Resource Recovery, 161–180. https://doi.org/10.1016/b978-0-12-811639-5.00004-8

Hardwianti, R., Primaniyarta, M., Palupi, N. S., Studi, P., Pangan, T., Pascasarjana, S., Pertanian Bogor, I., Ilmu, D., & Pertanian, T. (2014). Konsistensi Mutu Pilus Tepung Tapioka: Identifikasi Parameter Utama Penentu Kerenyahan Quality Consistency of Tapioca Starch Pilus: Identification of Main Parameters for Crispiness. Jurnal Mutu Pangan, 1(2), 91–99.

Hasanah, F., & Tjahjani, S. (2020). Pembuatan dan Karakterisasi Briket Campuran Kulit Durian (Durio Zibethinus Murr) dan Tempurung Keluwak (Pangium Edule) sebagai Bahan Bakar Alternatif. Journal of Chemistry, 9(2), 128–136. https://doi.org/10.26740/ujc.v9n2.p128-136

Hestiyantini, E. D., Malis, E., & Ridho, R. (2022). Pengaruh Percepatan Pembakaran Briket Tempurung Kelapa dengan Penambahan Variasi Oksidator KMnO4. Jurnal Crystal : Publikasi Penelitian Kimia Dan Terapannya, 4(1), 16–24. https://doi.org/10.36526/jc.v4i1.2370

Junaidi, Ariefin, & Mawardi, I. (2017). Pengaruh Persentase Perekat Terhadap Karakteristik Pellet Kayu Dari Kayu Sisa Gergajian. Jurnal Mesin Sains Terapan, 1(1), 13–17.

Kongprasert, N., Wangphanich, P., & Jutilarptavorn, A. (2019). Charcoal briquettes from Madan wood waste as an alternative energy in Thailand. Procedia Manufacturing, 30, 128–135. https://doi.org/10.1016/j.promfg.2019.02.019

Maharani, V. G. S. (2022). Studi Pemanfaatan Lumpur IPAL dan Kulit Buah Nanas Sebagai Energi Alternatif Terbarukan. Institut Teknologi Kalimantan.

Merry Mitan, N., Saifulazwan Ramlan, M., Zainul Hakim Nawawi, M., & Hafizuddin Mohd Gazali, M. (2018). Performance of binders in briquetting of durian peel as a solid biofuel. Materials Today: Proceedings, 5(10), 21753–21758. https://doi.org/10.1016/j.matpr.2018.07.028

Mukhtar, G., Dwi, N., Hikmah, F., & Zakiya, U. (2015). Refining Minyak Pelumas Bekas Dengan Proses Fisika-Kimia. Seminar Nasional Teknik Kimia Kejuangan, 0(0), 9-1-I9.7.

Nuriana, W., Anisa, N., & TIN, M. (2013). Karakteristik biobriket kulit durian sebagai bahan bakar alternatif terbarukan characteristics of durian peel biobriquettes as renewable alternative fuels. Jurnal Teknologi Industri Pertanian, 23(1), 70–76.

Nurrohmah, K., Sari, A. K., Riziani, D., & Kusumasari, S. (2021). Makudu (Makaroni Kulit Durian): Potensi Pangan Olahan Praktis untuk Mengurangi Limbah Kulit Durian. JITIPARI (Jurnal Ilmiah Teknologi Dan Industri Pangan UNISRI), 6(1), 30–40. https://doi.org/10.33061/jitipari.v6i1.3960

Putri, A. P., & Sukandar, S. (2013). Studi Pemanfaatan Limbah B3 Sludge Produced Water Sebagai Bahan Baku Refuse Derived Fuel (Rdf). Jurnal Tehnik Lingkungan, 19(1), 1–10. https://doi.org/10.5614/jtl.2013.19.1.1

Putri, R. E., & Andasuryani, A. (2017). Studi Mutu Briket Arang Dengan Bahan Baku Limbah Biomassa. Jurnal Teknologi Pertanian Andalas, 21(2), 143. https://doi.org/10.25077/jtpa.21.2.143-151.2017

Senanayake, N. S., Shyamalee, D., Amarasinghe, A. D. U. S., & Senanayaka, N. S. (2015). Evaluation of different binding materials in forming biomass briquettes with saw dust Power Generation from MSW in Sri Lanka View project Evaluation of different binding materials in forming biomass briquettes with saw dust. International Journal of Scientific and Research Publications, 5(3), 13–20.

Srisanga, N., Srisanga, S., Wongpitithawata, P., The-Eyea, K., Srisanga, N., Srisanga, S., Wongpitithawata, P., & The-Eyea, K. (2017). Production of Biomass Briquette from Residual Bleaching Earth and Empty Palm Bunch (pp. 1079–1084). Elsevier Ltd.

Staničić, I., Brorsson, J., Hellman, A., Mattisson, T., & Backman, R. (2022). Thermodynamic Analysis on the Fate of Ash Elements in Chemical Looping Combustion of Solid Fuels Iron-Based Oxygen Carriers (pp. 9648–9659). American Chemical Society. https://doi.org/https://doi.org/10.1021/acs.energyfuels.2c01578

Suryani, E., Farid, M., & Mayub, A. (2019). Implementasi Karakteristik Nilai Kalor Briket Campuran Limbah Kulit Durian dan Tempurung Kelapa pada Pembelajaran Suhu dan Kalor Di SMP N 15 Kota Bengkulu. PENDIPA Journal of Science Education, 3(3), 146–153. https://doi.org/10.33369/pendipa.3.3.146-153

Tambaria, T. N., & Serli, B. F. Y. (2019). Kajian Analisis Proksimat pada Briket Batubara dan Briket Biomassa. Jurnal Geosains Dan Teknologi, 2(2), 77. https://doi.org/10.14710/jgt.2.2.2019.77-86

Yilmaz, E., Wzorek, M., & Akçay, S. (2017). Co-pelletization of sewage sludge and agricultural wastes. Journal of Environmental Management, 0301–4797. https://doi.org/10.1016/j.jenvman.2017.09.012

Zhang, W., Zhuo, Z., Lu, P., Tang, J., Tang, H., Lu, J., Xing, T., & Wang, Y. (2020). LIBS analysis of the ash content, volatile matter, and calorific value in coal by partial least squares regression based on ash classification. Journal of Analytical Atomic Spectrometry, 35(8), 1621–1631. https://doi.org/10.1039/d0ja00186d

Zubairu, A., & Gana, S. A. (2014). Production and Characterization of Briquette Charcoal by Carbonization of Agro-Waste. Energy and Power, 4(2), 41–47. https://doi.org/10.5923/j.ep.20140402.03