Slot-die coating method in organic solar panel and evaluation in polluted air
Main Article Content
Abstract
Renewable energy sources and pollution have a direct effect on each other. Solar panels development could enhance the adoption of green energy sources and contribute to a cleaner environment. Today's third generation organic photovoltaic panels (OPVs) offer good efficiency, low fabrication costs, and can be produces rapidly using slot-die coating methods. These advantages make OPVs increasingly attractive for broadening solar energy consumption. Therefore, related studies are being conducted to achieve this goal. This study aimed to evaluate real-world performance of OPVs in polluted air by testing a fully slot-die-coating OPV module in Tehran’s polluted environment, specifically at four air quality control stations. The results showed a power conversion efficiency (PCE) of 6.3% under standard test condition (STC) and maximum power output of 0.189 W in 5×6 cm module, which include ITO/PET, PEI, P3HT-PCBM, PEDOT-PSS, and AGNW layers. Testing in polluted environment revealed a significant dicrease in current and maximum power (Pmax) due to reduced sunlight reaching the module’s surface. Pmax dropped to 0.0229 W at least polluted site in Masodieh Street and to 0.0173 W at the most polluted site in Shahr-e Rey Street.
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Brabec, C. J. (2004). Organic photovoltaics: technology and market. Solar Energy Materials and Solar Cells, 83(2), 273–292. https://doi.org/10.1016/j.solmat.2004.02.030
Carlé, J. E., & Krebs, F. C. (2013). Technological status of organic photovoltaics (OPV). Solar Energy Materials and Solar Cells, 119, 309–310. https://doi.org/10.1016/j.solmat.2013.08.044
Chang, Y.-M., Liao, C.-Y., Lee, C.-C., Lin, S.-Y., Teng, N.-W., & Huei-Shuan Tan, P. (2019). All solution and ambient processable organic photovoltaic modules fabricated by slot-die coating and achieved a certified 7.56% power conversion efficiency. Solar Energy Materials and Solar Cells, 202, 110064. https://doi.org/10.1016/j.solmat.2019.110064
Falkowska, L. (2016). Environmental characteristics of gaseous pollutants and related adverse health effects. In Synergic influence of gaseous, particulate, and biological pollutants on human health (pp. 3–38). CRC Press.
Ganesan, S., Mehta, S., & Gupta, D. (2019). Fully printed organic solar cells – a review of techniques, challenges and their solutions. Opto-Electronics Review, 27(3), 298–320. http://czasopisma.pan.pl/Content/115265/PDF/opelre_2019_27_3_298-320.pdf
Garluna, J. (2022). Measuring Solar Cell Efficiency: A Comparative Study of Energy Conversion Efficiency of Solar Cells of the Solar Electric Vehicle, STC-3 at the World Solar Challenge in Australia and at Test Drives on Sathorn Road in Bangkok, Thailand. TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 1–3. https://doi.org/10.1109/TENCON55691.2022.9977549
Hallum, G. E., Kürschner, D., Eulenkamp, C., Auer, R., Hartmann, B., Schulz, W., & Huber, H. P. (2023). Indium tin oxide ultrafast laser lift-off ablation mechanisms and damage minimization. Chang Optics Express, 31(26), 43017–43034. https://doi.org/10.1364/OE.504582
Heeger, A. J. (2010). Semiconducting polymers: the Third Generation. Chem. Soc. Rev., 39(7), 2354–2371. https://doi.org/10.1039/B914956M
Hong, S., Lee, J., Kang, H., & Lee, K. (2013). Slot-die coating parameters of the low-viscosity bulk-heterojunction materials used for polymer solarcells. Solar Energy Materials and Solar Cells, 112, 27–35. https://doi.org/10.1016/j.solmat.2013.01.006
Hoth, C. N., Choulis, S. A., Schilinsky, P., & Brabec, C. J. (2007). High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends. Advanced Materials, 19(22), 3973–3978. https://doi.org/10.1002/adma.200700911
Hu, Z., & Gesquiere, A. J. (2009). PCBM concentration dependent morphology of P3HT in composite P3HT/PCBM nanoparticles. Chemical Physics Letters, 476(1), 51–55. https://doi.org/10.1016/j.cplett.2009.05.066
Jayakrishnan, R., & Shouri, P. V. (2014). Optimum Monochromatic Wavelengths for Solar Panel Testing and Conversion of Parameters to STC. Bonfring International Journal of Power Systems and Integrated Circuits, 4(2), 18–24. https://doi.org/10.9756/BIJPSIC.4869
Jenkal, S., Oubella, M., Mouslim, S., Ajaâmoum, M., & Alaoui, M. S. H. (2023). Extraction of Monocrystalline Silicon Photovoltaic Panel Parameters Based on Experimental Data. NanoWorld Journal, 9(S2), 460–465. https://doi.org/10.17756/nwj.2023-s2-078
Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T.-Q., Dante, M., & Heeger, A. J. (2007). Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 317(5835), 222–225. https://doi.org/10.1126/science.1141711
Krebs, F. C., Gevorgyan, S. A., & Alstrup, J. (2009). A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. Journal of Materials Chemistry, 19(30), 5442–5451. https://doi.org/10.1039/B823001C
Leong, C. Y., Yap, S. S., Ong, G. L., Ong, T. S., Yap, S. L., Chin, Y. T., Lee, S. F., Tou, T. Y., & Nee, C. H. (2020). Single pulse laser removal of indium tin oxide film on glass and polyethylene terephthalate by nanosecond and femtosecond laser. Nanotechnology Reviews, 9(1), 1539–1549. https://doi.org/doi:10.1515/ntrev-2020-0115
Li, X., Yang, H., Du, X., Lin, H., Yang, G., Zheng, C., & Tao, S. (2023). High-Performance Layer-by-Layer organic solar cells enabled by Non-Halogenated solvent with 17.89% efficiency. Chemical Engineering Journal, 452, 139496. https://doi.org/10.1016/j.cej.2022.139496
Li, Y., Xu, G., Cui, C., & Li, Y. (2018). Flexible and Semitransparent Organic Solar Cells. Advanced Energy Materials, 8(7), 1701791. https://doi.org/10.1002/aenm.201701791
Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., & Yu, L. (2010). For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials (Deerfield Beach, Fla.), 22(20), E135-8. https://doi.org/10.1002/adma.200903528
Liu, C., Zhang, X., Shan, J., Li, Z., Guo, X., Zhao, X., & Yang, H. (2022). Large-Scale Preparation of Silver Nanowire-Based Flexible Transparent Film Heaters by Slot-Die Coating. In Materials (Vol. 15, Issue 7, p. 2634). https://doi.org/10.3390/ma15072634
Mahamat, C., & Margoum, E. hassane. (2020). A grid connected photovoltaic system using a parallel multilevel inverter: Optimal number of inverter cells. Authorea. https://doi.org/10.22541/au.160504023.39489127/v1
Mazzio, K. A., & Luscombe, C. K. (2015). The future of organic photovoltaics. Chemical Society Reviews, 44(1), 78–90. https://doi.org/10.1039/C4CS00227J
Moonen, P. F., Yakimets, I., & Huskens, J. (2012). Fabrication of Transistors on Flexible Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies. Advanced Materials, 24(41), 5526–5541. https://doi.org/10.1002/adma.201202949
Mufti, N., Amrillah, T., Taufiq, A., Sunaryono, Aripriharta, Diantoro, M., Zulhadjri, & Nur, H. (2020). Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 207, 1146–1157. https://doi.org/10.1016/j.solener.2020.07.065
Najafi, L., Romano, V., Oropesa-Nuñez, R., Prato, M., Lauciello, S., D’Angelo, G., Bellani, S., & Bonaccorso, F. (2021). Hybrid Organic/Inorganic Photocathodes Based on WS2 Flakes as Hole Transporting Layer Material. Small Structures, 2(3), 2000098. https://doi.org/10.1002/sstr.202000098
Rao, M. V, & Dubey, P. S. (1990). Biochemical aspects (antioxidants) for development of tolerance in plants growing at different low levels of ambient air pollutants. Environmental Pollution, 64(1), 55–66. https://doi.org/10.1016/0269-7491(90)90095-T
Serenelli, L., Martini, L., Menchini, F., Izzi, M., & Tucci, M. (2023). Open circuit voltage reduction due to recombination at the heterojunction solar cell edge. Solar Energy, 258, 2–7. https://doi.org/10.1016/j.solener.2023.04.027
Syam, D. J. (2023). Renewable and New Energy Sources for Electrical Power Generation: Solar Power Plants Wind Turbine Driven Power Plants Co-Generation Power Plants Biomass Based Power Plants Geo-Thermal Power Plants Tidal Energy Based Power Plants Fuel-Cells for Electrical . In Electrical Power Generation. CRC Press.
Tsuchiya, T., Yamaguchi, F., Morimoto, I., Nakajima, T., & Kumagai, T. (2010). Microstructure control of low-resistivity tin-doped indium oxide films grown by photoreaction of nanoparticles using a KrF excimer laser at room temperature. Applied Physics A, 99(4), 745–749. https://doi.org/10.1007/s00339-010-5633-0
Yousefi, S., Shahsavani, A., & Hadei, M. (2019). Applying EPA’s instruction to calculate air quality index (AQI) in Tehran. Journal of Air Pollution and Health, 4(2), 81–86. https://doi.org/10.18502/japh.v4i2.1232