Bio-cooling façade in tropical climate
Main Article Content
Abstract
The purpose of this paper is to explore how building design requires consideration of both energy consumption and environmental impacts of the construction and maintenance processes. The increasing energy consumption and construction waste are concerning trends within the building industry. In response to this issues, the concept of circular economy has gained prominence, emphasizing the need to restore, rebuild, and regenerate resources in a sustainable manner. This research focused on Bio-Cooling Façades (BCF) in tropical climates through the assessment of four parameters including the biomaterial, cooling façade, energy consumption, and building circularity. This was conducted through a comparative analysis of existing and eight proposed BCF configurations designed to reduce energy consumption and increase building circularity. The results show that applying BCF at a glazing size of 40% reduces solar heat radiation, lowers building energy consumption, and minimizes potential construction material waste in countries with tropical climates. These findings assist architects and the industry in defining the optimal building façades for cooling, ultimately reducing energy consumption.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abu Dabous, S., Ibrahim, T., Shareef, S., Mushtaha, E., & Alsyouf, I. (2022). Sustainable façade cladding selection for buildings in hot climates based on thermal performance and energy consumption. Results in Engineering, 16. https://doi.org/10.1016/j.rineng.2022.100643
Ahram, F. H., & Zakaria, S. A. S. (2023). The contribution of green building in reducing the carbon footprint and attaining SDG 13. IOP Conference Series: Earth and Environmental Science, 1205(1). https://doi.org/10.1088/1755-1315/1205/1/012034
Al-Shargabi, A. A., Almhafdy, A., Ibrahim, D. M., Alghieth, M., & Chiclana, F. (2022). Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures. Journal of Building Engineering, 54. https://doi.org/10.1016/j.jobe.2022.104577
Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1–17. https://doi.org/10.1016/j.susmat.2015.05.002
Ayadi, M., Segovia, C., Baffoun, A., Zouari, R., Fierro, V., Celzard, A., Msahli, S., & Brosse, N. (2023). Influence of Anatomy, Microstructure, and Composition of Natural Fibers on the Performance of Thermal Insulation Panels. ACS Omega, 8(51), 48673–48688. https://doi.org/10.1021/acsomega.3c02481
Binici, H., Aksogan, O., & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17–26. https://doi.org/10.1016/j.scs.2015.09.004
Bougdah, H., & Sharples, S. (2009). Environment, technology and sustainability. Environment, Technology and Sustainability, 9780203878, 1–303. https://doi.org/10.4324/9780203878408
Boukhanouf, R., Alharbi, A., Ibrahim, H., & Kanzari, M. (2015). Investigation of a sub-wet bulb temperature evaporative cooler for buildings. Proceedings of the Sustainable Building Conference 2013, April 2016, 70–79.
BRE Global Ltd. (2020). Fire Performance of Cladding Materials Research. MHCLG Fire Performance of Cladding Materials Research: Final Report, 1–14.
Brunklaus, B., & Riise, E. (2018). Bio-based Materials Within the Circular Economy: Opportunities and Challenges. Designing Sustainable Technologies, Products and Policies, 43–47. https://doi.org/10.1007/978-3-319-66981-6_5
Carus, M., & Dammer, L. (2018). The “Circular Bioeconomy”-Concepts, Opportunities and Limitations. https://doi.org/The Circular Bioeconomy—Concepts, Opportunities, and Limitations
Denis, E. G. (2016). Why investing in energy-efficient buildings pays off. 1–8. https://www.iso.org/news/2016/11/Ref2140.html
Dewi, O. C., Rahmasari, K., Hanjani, T. A., Ismoyo, A. D., & Dugar, A. M. (2022). Window-to-Wall Ratio as a Mode of Daylight Optimization for an Educational Building with Opaque Double-Skin Façade. Journal of Sustainable Architecture and Civil Engineering, 30(1), 142–152. https://doi.org/10.5755/j01.sace.30.1.29744
Dhir, D. K., Rashidi, A., Bogyo, G., Ryde, R., Pakpour, S., & Milani, A. S. (2020). Environmental durability enhancement of natural fibres using plastination: A feasibility investigation on bamboo. Molecules, 25(3). https://doi.org/10.3390/molecules25030474
DKI Jakarta Provincial Government. (2012). Jakarta Green Building User Guide Based on Governor Regulation Number 38/2012. Pemerintah Provinsi DKI Jakarta, 1. https://jakarta.bpk.go.id/pemerintah-provinsi-dki-jakarta/#
Ferreira, C., Silva, A., de Brito, J., Dias, I. S., & Flores-Colen, I. (2021). Definition of a condition-based model for natural stone claddings. Journal of Building Engineering, 33. https://doi.org/10.1016/j.jobe.2020.101643
Finch, G. (2023). Strategies for Applying the Circular Economy to Light Timber Framing. Te Herenga Waka – Victoria University of Wellington.
Foroughi, F., Ghomi, E. R., Dehaghi, F. M., Borayek, R., & Ramakrishna, S. (2021). A review on the life cycle assessment of cellulose: From properties to the potential of making it a low carbon material. Materials, 14(4), 1–23. https://doi.org/10.3390/ma14040714
Ganesan, K., Barowski, A., & Ratke, L. (2019). Gas permeability of cellulose aerogels with a designed dual pore space system. Molecules, 24(15). https://doi.org/10.3390/molecules24152688
Goddin, J. (2020). A free Calculator for the Materials Circularity Indicator. Hoskins.
Granta and LIFE and Ellen MacArthur Foundation. (2021). Material circularity indicator. Government Information Quarterly, 23(2), 342–345. https://www.ellenmacarthurfoundation.org/resources/apply/material-circularity-indicator#:~:text=The Material Circularity Indicator (MCI,material price volatility and material
Hassan, S. R. (2020). Environmental Sustainability of Building Materials and Assessment Methods (Practical Application Using Life Cycle Assessment). June 2015. https://www.researchgate.net/publication/342529745
Hernandez-Cruz, P., Giraldo-Soto, C., Escudero-Revilla, C., Hidalgo-Betanzos, J. M., & Flores-Abascal, I. (2023). Energy efficiency and energy performance gap in centralized social housing buildings of the Basque Country. Energy and Buildings, 298, 113534. https://doi.org/10.1016/j.enbuild.2023.113534
Hornaday, F. (2020). How long does bamboo live? Bambu Batu Cultivating Bamboo Resources. https://bambubatu.com/how-long-does-bamboo-live/
Huang, X., Lin, Y., Alva, G., & Fang, G. (2017). Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Solar Energy Materials and Solar Cells, 170, 68–76. https://doi.org/10.1016/j.solmat.2017.05.059
International Reference Centre for the Life Cycle of Products, P. and S. (CIRAIG. (2015). Circular Economy: A Critical Review of Concepts. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Jara-Baeza, F., Rajagopalan, P., & Andamon, M. M. (2023). A holistic assessment of indoor environmental quality perception in Australian high-rise social housing. Energy and Buildings, 284. https://doi.org/10.1016/j.enbuild.2023.112859
John, C. (2022). How Long Does Insulation Last? (Spray Foam, Fiberglass, Cellulose, Mineral Wool). Airflow Academy. https://airflowacademy.com/how-long-does-insulation-last/
Kapilan, N., Isloor, A. M., & Karinka, S. (2023). A comprehensive review on evaporative cooling systems. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101059
Khani, A., Khakzand, M., & Faizi, M. (2022). Multi-objective optimization for energy consumption, visual and thermal comfort performance of educational building (case study: Qeshm Island, Iran). Sustainable Energy Technologies and Assessments, 54. https://doi.org/10.1016/j.seta.2022.102872
Klemm, A., & Wiggins, D. (2016). Sustainability of natural stone as a construction material. Sustainability of Construction Materials, 283–308. https://doi.org/10.1016/b978-0-08-100370-1.00012-3
Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231–252. https://doi.org/10.1038/sj.jea.7500165
Knotts, W., Miller, D., Mo, C., Schaefer, L. A., & Clark, W. W. (2011). Smart insulation for thermal control in buildings. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011, 1, 703–712. https://doi.org/10.1115/smasis2011-5007
Le, D. L., Salomone, R., & Nguyen, Q. T. (2023). Circular bio-based building materials: A literature review of case studies and sustainability assessment methods. Building and Environment, 244, 110774. https://doi.org/10.1016/j.buildenv.2023.110774
Lechner, N. (2015). Heating, Cooling, Lighting - Sustainable Design Methods for Architects. Wiley, 1999(December), 283.
Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., Nelson, K., & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 200. https://doi.org/10.1016/j.compositesb.2020.108254
Lori, G., Morison, C., Larcher, M., & Belis, J. (2019). Sustainable facade design for glazed buildings in a blast resilient urban environment. Glass Structures and Engineering, 4(2), 145–173. https://doi.org/10.1007/s40940-018-0088-3
Manandhar, R., Kim, J. H., & Kim, J. T. (2019). Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. Journal of Asian Architecture and Building Engineering, 18(2), 52–62. https://doi.org/10.1080/13467581.2019.1595629
Mangkuto, R. A., Rohmah, M., & Asri, A. D. (2016). Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy, 164, 211–219. https://doi.org/10.1016/j.apenergy.2015.11.046
Manso, M., & Castro-Gomes, J. P. (2016). Thermal analysis of a new modular system for green walls. Journal of Building Engineering, 7, 53–62. https://doi.org/10.1016/j.jobe.2016.03.006
Marcus Fairs. (2021). Mycelium is “part of the solution” to carbon-negative buildings. Dezeen. https://www.dezeen.com/2021/06/25/carbon-negative-buildings-mycelium-insulation-fire-proofing/
MaterialDistrict. (2022). Mycelium (root structure of fungi). Material District. https://materialdistrict.com/material/mycelium-root-structure-of-fungi/
Maurer, M., Koulouris, P., & Bogner, F. X. (2020). Green awareness in action-how energy conservation action forces on environmental knowledge, values and behaviour in adolescents’ school life. Sustainability (Switzerland), 12(3). https://doi.org/10.3390/su12030955
McGaw, J., Andrianopoulos, A., & Liuti, A. (2022). Tangled Tales of Mycelium and Architecture: Learning From Failure. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.805292
Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renewable and Sustainable Energy Reviews, 53, 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055
Mohamed, A. L., & Hassabo, A. G. (2015). Flame Retardant of Cellulosic Materials and Their Composites. Engineering Materials, 247–314. https://doi.org/10.1007/978-3-319-03467-6_10
National Standardization Agency. (2020). Building envelope energy conservation in buildings. SNI 6389-2020 , ICS 91.040.01, Badan Standardisasi Nasional. https://pesta.bsn.go.id/produk/detail/13242-sni63892020
Nayak, A. V. (2022). Concept of Circular Economy in Building Construction. Journal of the Indian Institute of Architects, 87(06), 80–85. https://www.researchgate.net/publication/362291749
Nielsen, A. N., Jensen, R. L., Larsen, T. S., & Nissen, S. B. (2016). Early stage decision support for sustainable building renovation - A review. Building and Environment, 103, 165–181. https://doi.org/10.1016/j.buildenv.2016.04.009
Osman, E. Y., & Amanor-Boadu, V. (2023). Economic Assessment of Mycelia-Based Composite in the Built Environment. https://krex.k-state.edu/bitstream/handle/2097/43065/EliyasuOsman2023.pdf?sequence=3
Petruzzello, M. (2024). Bamboo. Britannica.Com. https://www.britannica.com/plant/bamboo
Pires, V., Amaral, P. M., Simão, J. A. R., & Galhano, C. (2022). Experimental procedure for studying the degradation and alteration of limestone slabs applied on exterior cladding. Environmental Earth Sciences, 81(3). https://doi.org/10.1007/s12665-022-10204-3
Pornwannachai, W., Ebdon, J. R., & Kandola, B. K. (2018). Fire-resistant natural fibre-reinforced composites from flame retarded textiles. Polymer Degradation and Stability, 154, 115–123. https://doi.org/10.1016/j.polymdegradstab.2018.05.019
Pujadas-Gispert, E., Alsailani, M., van Dijk (Koen), K. C. A., Rozema (Annine), A. D. K., ten Hoope (Puck), J. P., Korevaar (Carmen), C. C., & Moonen (Faas), S. P. G. (2020). Design, construction, and thermal performance evaluation of an innovative bio-based ventilated façade. Frontiers of Architectural Research, 9(3), 681–696. https://doi.org/10.1016/j.foar.2020.02.003
Rana, S., Pichandi, S., Parveen, S., & Fangueiro, R. (2014). Natural Plant Fibers: Production, Processing, Properties and Their Sustainability Parameters. 1–35. https://doi.org/10.1007/978-981-287-065-0_1
Rockwool.com. (2023). Rockwool Product Range. A Rockwool Company. https://www.rockwool.com/uk/products-and-applications/product-overview/rockwool-product-range/
Sarihi, S., Mehdizadeh Saradj, F., & Faizi, M. (2021). A Critical Review of Façade Retrofit Measures for Minimizing Heating and Cooling Demand in Existing Buildings. Sustainable Cities and Society, 64. https://doi.org/10.1016/j.scs.2020.102525
Sevilgen, G., & Kilic, M. (2011). Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators. Energy and Buildings, 43(1), 137–146. https://doi.org/10.1016/j.enbuild.2010.08.034
Seydibeyoğlu, M. Ö., Mohanty, A. K., & Misra, M. (2017). Fiber Technology for Fiber-Reinforced Composites. Fiber Technology for Fiber-Reinforced Composites, 1–325. https://doi.org/10.1016/c2015-0-05497-1
Shah, D. U., Bock, M. C. D., Mulligan, H., & Ramage, M. H. (2016). Thermal conductivity of engineered bamboo composites. Journal of Materials Science, 51(6), 2991–3002. https://doi.org/10.1007/s10853-015-9610-z
Solarte, A., Numapo, J., Do, T., Bolanos, A., Hidalgo, J. P., & Torero, J. L. (2021). Understanding fire growth for performance based design of bamboo structures. Fire Safety Journal, 120. https://doi.org/10.1016/j.firesaf.2020.103057
Stapulionienė, R., Vaitkus, S., Vėjelis, S., & Sankauskaitė, A. (2016). Investigation of thermal conductivity of natural fibres processed by different mechanical methods. International Journal of Precision Engineering and Manufacturing, 17(10), 1371–1381. https://doi.org/10.1007/s12541-016-0163-0
Tacer-Caba, Z., Varis, J. J., Lankinen, P., & Mikkonen, K. S. (2020). Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials and Design, 192. https://doi.org/10.1016/j.matdes.2020.108728
The Manufacturer. (2015). Biobased materials: cultivating a sustainable future. Themanufacturer.Com. https://www.themanufacturer.com/articles/biobased-materials-cultivating-a-sustainable-future/
UN Environment Programme. (2022). Understanding circularity. Buildingcircularity. https://buildingcircularity.org/
Uris, A., Llopis, A., & Llinares, J. (1999). Effect of the rockwool bulk density on the airborne sound insulation of lightweight double walls. Applied Acoustics, 58(3), 327–331. https://doi.org/10.1016/S0003-682X(98)00065-6
van der Zwaag, M., Wang, T., Bakker, H., van Nederveen, S., Schuurman, A. C. B., & Bosma, D. (2023). Evaluating building circularity in the early design phase. Automation in Construction, 152. https://doi.org/10.1016/j.autcon.2023.104941
van Stijn, A., Malabi Eberhardt, L. C., Wouterszoon Jansen, B., & Meijer, A. (2021). A Circular Economy Life Cycle Assessment (CE-LCA) model for building components. Resources, Conservation and Recycling, 174. https://doi.org/10.1016/j.resconrec.2021.105683
Xie, K., Lee, M., Khalid, R., & Gbouna Zakka, V. (2023). The impact of personal environmental control on the performance of thermal systems: Building energy consumption, occupant thermal comfort, and productivity. Energy and Buildings, 113552. https://doi.org/10.1016/j.enbuild.2023.113552
Xu, B., Xie, X., & Pei, G. (2023). New method of equivalent energy consumption for evaluating thermal performance of energy-saving materials in passive buildings. Applied Thermal Engineering, 230. https://doi.org/10.1016/j.applthermaleng.2023.120774
Yang, T. C., Chung, M. J., Wu, T. L., & Yeh, C. H. (2021). Physicomechanical properties and water resistance of heat-modified moso bamboo (Phyllostachys pubescens) as a function of density. Construction and Building Materials, 306. https://doi.org/10.1016/j.conbuildmat.2021.124897
Yu, Z., Ji, Y., Bourg, V., Bilgen, M., & Meredith, J. C. (2020). Chitin- and cellulose-based sustainable barrier materials: a review. Emergent Materials, 3(6), 919–936. https://doi.org/10.1007/s42247-020-00147-5
Zhang, N., Han, Q., & de Vries, B. (2021). Building circularity assessment in the architecture, engineering, and construction industry: A new framework. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212466
Zhang, W., Jia, J., Zhang, J., Ding, Y., Zhang, J., Lu, K., & Mao, S. (2022). Pyrolysis and combustion characteristics of typical waste thermal insulation materials. Science of the Total Environment, 834. https://doi.org/10.1016/j.scitotenv.2022.155484