Materials characterization for Refuse Derived Fuel (RDF) production as renewable energy resources

Main Article Content

I Made Wahyu Wijaya
I Gusti Ngurah Made Wiratama
I Kadek Ardi Putra

Abstract

This study offers a comprehensive analysis of key parameters—volatile matter, carbon content, ash content, and gross energy—across various material samples intended for Refused Derived Fuel (RDF) briquette production. Through meticulous examination, promising trends emerge, highlighting optimal material combinations for efficient combustion and heat generation. Samples rich in volatile matter and carbon content, notably those incorporating wood powder, demonstrate elevated calorific values, indicating their potential for effective energy production. Conversely, material combinations with low ash content suggest cleaner combustion and reduced environmental impact. The gross energy analysis further validates the substantial heat generation potential of specific sample combinations, rendering them suitable for diverse heating applications. These findings emphasize the critical role of precise raw material selection and meticulous manufacturing process optimization in producing RDF briquettes with desirable properties. Such briquettes not only offer economic viability but also contribute to environmental sustainability by providing an alternative fuel source with reduced emissions. This research underscores the importance of continued exploration and refinement in the development of RDF briquettes, aiming to meet growing energy demands while mitigating environmental concerns.

Article Details

How to Cite
Wijaya, I. M. W., Wiratama, I. G. N. M., & Putra, I. K. A. (2024). Materials characterization for Refuse Derived Fuel (RDF) production as renewable energy resources. Sustinere: Journal of Environment and Sustainability, 8(2), 214–229. https://doi.org/10.22515/sustinere.jes.v8i2.407
Section
Articles
References

Alsulaili, A., Ali, O., Alenezi, N., & Al-Dabbous, A. N. (2024). Selection of municipal solid waste disposal technology using the Analytic Hierarchy Process and Genetic Algorithm for Gulf Cooperation Council Countries. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2024.03.015

Balachander, J. (2015). An Environmental Guide for Hindu Temples and Ashrams.

Bassey, E. J., Cheng, J. H., & Sun, D. W. (2022). Thermoultrasound and microwave-assisted freeze-thaw pretreatments for improving infrared drying and quality characteristics of red dragon fruit slices. Ultrasonics Sonochemistry, 91, 106225. https://doi.org/10.1016/j.ultsonch.2022.106225

Brás, I., Silva, M. E., Lobo, G., Cordeiro, A., Faria, M., & De Lemos, L. T. (2017). Refuse Derived Fuel from Municipal Solid Waste rejected fractions- a Case Study. Energy Procedia, 120, 349–356. Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.07.227

Brunner, I Made Indradjaja M., Norhidayat, A., & Brunner, Satria M. (2021). Pengolahan Sampah Organik dan Limbah Biomassa dengan Teknologi Olah Sampah di Sumbernya Serambi Engineering, 6(3), 285-295. https://doi.org/10.32672/jse.v6i3.3120

Călin, C., Ion, I. V., Rusu, E., & Frătiţa, M. (2021). Performance analysis of a RDF gasification and solar thermal energy based CCHP system. Energy Reports, 7(3), 186–192. https://doi.org/10.1016/j.egyr.2021.06.032

Chalermcharoenrat, S., Laohalidanond, K., & Kerdsuwan, S. (2015). Optimization of Combustion Behavior and Producer Gas Quality from Reclaimed Landfill Through Highly Densify RDF-Gasification. Energy Procedia, 79, 321–326. https://doi.org/10.1016/j.egypro.2015.11.496

Das, D. Kumar & Baishya, P. (2017). Municipal Solid Waste Management: A Case Study of Kamakhya Devi Temple, Assam, India. International Research Journal of Engineering and Technology. 4(9), 794-798.

Deshannavar, U. B., Hegde, P. G., Dhalayat, Z., Patil, V., & Gavas, S. (2018). Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: An energy application. Materials Science for Energy Technologies, 1(2), 175–181. https://doi.org/10.1016/j.mset.2018.07.003

Edo, M., Budarin, V., Aracil, I., Persson, P. E., & Jansson, S. (2016). The combined effect of plastics and food waste accelerates the thermal decomposition of refuse-derived fuels and fuel blends. Fuel, 180, 424–432. https://doi.org/10.1016/j.fuel.2016.04.062

Egan, A., Saju, A., Sigurnjak, I., Meers, E., & Power, N. (2022). What are the desired properties of recycling-derived fertilisers from an end-user perspective? Cleaner and Responsible Consumption, 5, 100057. https://doi.org/10.1016/j.clrc.2022.100057

Gałko, G., Mazur, I., Rejdak, M., Jagustyn, B., Hrabak, J., Ouadi, M., Jahangiri, H., & Sajdak, M. (2023). Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications. Energy, 263(D), 125920. https://doi.org/10.1016/j.energy.2022.125920

García, R., González-Vázquez, M. P., Rubiera, F., Pevida, C., & Gil, M. V. (2021). Co-pelletization of pine sawdust and refused derived fuel (RDF) to high-quality waste-derived pellets. Journal of Cleaner Production, 328, 129635. https://doi.org/10.1016/j.jclepro.2021.129635

Gargiulo, V., Alfe, M., Ruoppolo, G., Cammarota, F., Rossi, C.O., Loise, V., Porto, M., Calandra, P., Pochylski, M., Gapinski, J., & Caputo, P. (2023). How char from waste pyrolysis can improve bitumen characteristics and induce anti-aging effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676(A). 132199. https://doi.org/10.1016/j.colsurfa.2023.132199

Rajendra, I Gst. Ngr. Anom (2012). How a Belinese traditional home creates a comfortable internal environment without resorting to energy usage. Jurnal Kajian Bali, 2(1), 41-56.

Hayashi, T., & Ohsawa, Y. (2015). Knowledge structuring and reuse system using RDF for supporting scenario generation. Procedia Computer Science, 60(1), 1281–1288. https://doi.org/10.1016/j.procs.2015.08.233

Isaac, K., & Bada, S. O. (2020). The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon, 6(1), e03309. https://doi.org/10.1016/j.heliyon.2020.e03309

Jain, N. (2016). Waste management of temple floral offerings by vermicomposting and its effect on soil and plant growth. International Journal of Environmental & Agriculture Research, 2(7), 89-94.

Jamradloedluk, J., & Lertsatitthanakorn, C. (2015). Properties of densified-refuse derived fuel using glycerin as a binder. Procedia Engineering, 100, 505–510. https://doi.org/10.1016/j.proeng.2015.01.397

Jiang, Y., Zhuo, L., Wu, X., Zhang, Z., Guo, X., & Fan, J. (2024). Study on the interaction between inherent minerals of coal with refuse derived fuel (RDF) during co-firing. Carbon Resources Conversion, 7(3), 100208. https://doi.org/10.1016/j.crcon.2023.100208

Kaniowski, W., Taler, J., Wang, X., Kalemba-Rec, I., Gajek, M., s, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces ofMlonka-Mędrala, A., Nowak-Woźny, D. & Magdziarz, A. (2022). Investigation ofbiomas boilers. Fuel, 326, 125122. https://doi.org/10.1016/j.fuel.2022.125122

Khammee, P., Unpaprom, Y., Buochareon, S., & Ramaraj, R. (2019). Potential of Bioethanol Production from Marigold Temple Waste Flowers Potential of Bioethanol Production from Marigold Temple Waste Flowers. In Proceeding of the 1st Thailand biorefinery conference, the future of biorefinery for Thailand, 4, 25-26.

Kijo-Kleczkowska, A., Szumera, M., Gnatowski, A., & Sadkowski, D. (2022). Comparative thermal analysis of coal fuels, biomass, fly ash and polyamide. Energy, 258, 124840. https://doi.org/10.1016/j.energy.2022.124840

Li, Y., Yao, N., Liang, J., Wang, X., Niu, B., Jia, Y., Jiang, F., Yu, Q., Liu, D.L., Feng, H., He, H., Yang, G., & Pulatov, A. (2023). Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation. Agricultural Water Management, 276(1), 108079. https://doi.org/10.1016/j.agwat.2022.108079

Liedmann, B., Wirtz, S., Scherer, V., & Krüger, B. (2017). Numerical Study on the Influence of Operational Settings on Refuse Derived Fuel Co-firing in Cement Rotary Kilns. Energy Procedia, 120, 254–261. https://doi.org/10.1016/j.egypro.2017.07.176

Maj, I., Kalisz, S., Wejkowski, R., Pronobis, M., & Gołombek, K. (2022). High-temperature corrosion in a multifuel circulating fluidized bed (CFB) boiler co-firing refuse derived fuel (RDF) and hard coal. Fuel, 324(Part C), 124749. https://doi.org/10.1016/j.fuel.2022.124749

Makwana, J., Dhass, A. D., Ramana, P. V., Sapariya, D., & Patel, D. (2023). An analysis of waste/biomass gasification producing hydrogen-rich syngas: A review. International Journal of Thermofluids, 20. 100492. https://doi.org/10.1016/j.ijft.2023.100492

Martana, S. P. (2019). Pura as a Fortress in Balinese Religious Traditional Architecture Building. IOP Conference Series: Materials Science and Engineering, 662(4). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/662/4/042011

Materazzi, M., Lettieri, P., Taylor, R., & Chapman, C. (2016). Performance analysis of RDF gasification in two stages fluidized bed-plasma process. Waste Management, 47, 256–266. https://doi.org/10.1016/j.wasman.2015.06.016

Mlonka-Mędrala, A., Dziok, T., Magdziarz, A., & Nowak, W. (2021). Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal. Energy, 234, 121229. https://doi.org/10.1016/j.energy.2021.121229

Munshi, T. A., Jahan, L. N., Howladar, M. F., & Hashan, M. (2024). Prediction of gross calorific value from coal analysis using decision tree-based bagging and boosting techniques. Heliyon, 10(1), e23395. https://doi.org/10.1016/j.heliyon.2023.e23395

Nasiri, S., Hajinezhad, A., Kianmehr, M. H., & Tajik, S. (2023). Enhancing municipal solid waste efficiency through Refuse Derived Fuel pellets: Additive analysis, die retention time, and temperature impact. Energy Reports, 10, 941–957. https://doi.org/10.1016/j.egyr.2023.07.039

Nobre, C., Vilarinho, C., Alves, O., Mendes, B., & Gonçalves, M. (2019). Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties. Energy, 181, 66–76. https://doi.org/10.1016/j.energy.2019.05.105

Nowak, M. (2023). Features of Refuse Derived Fuel in Poland – Physicochemical Properties and Availability of Refuse Derived Fuel. Journal of Ecological Engineering, 24(3), 1–9. https://doi.org/10.12911/22998993/157159

ÖzyuǧUran, A., & Yaman, S. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia, 107, 130–136. https://doi.org/10.1016/j.egypro.2016.12.149

Paolo, M., & Paola, M. (2015). RDF: From waste to resource - The Italian case. Energy Procedia, 81, 569–584. https://doi.org/10.1016/j.egypro.2015.12.136

Papastefanatos, G., Meimaris, M., & Vassiliadis, P. (2022). Relational schema optimization for RDF-based knowledge graphs. Information Systems, 104, 101754. https://doi.org/10.1016/j.is.2021.101754

Pardo, R., Taboada-Ruiz, L., Fuente, E., Ruiz, B., Díaz-Somoano, M., Calvo, L. F., & Paniagua, S. (2023). Exploring the potential of conventional and flash pyrolysis methods for the valorisation of grape seed and chestnut shell biomass from agri-food industry waste. Biomass and Bioenergy, 177, 106942. https://doi.org/10.1016/j.biombioe.2023.106942

Porshnov, D., Ozols, V., Ansone-Bertina, L., Burlakovs, J., & Klavins, M. (2018). Thermal decomposition study of major refuse derived fuel components. Energy Procedia, 147, 48–53. https://doi.org/10.1016/j.egypro.2018.07.032

Rajca, P., Poskart, A., Chrubasik, M., Sajdak, M., Zajemska, M., Skibiński, A., & Korombel, A. (2020). Technological and economic aspect of Refuse Derived Fuel pyrolysis. Renewable Energy, 161, 482–494. https://doi.org/10.1016/j.renene.2020.07.104

Rania, M. F., Lesmana, I. G. E., & Maulana, E. (2019). Analisis Potensi Refuse Derived Fuel (RDF) dari Sampah pada Tempat Pembuangan Akhir (TPA) di Kabupaten. Sintek Jurnal : Jurnal Ilmiah Teknik Mesin, 13(1), 51–59. https://doi.org/10.24853/sintek.13.1.51-59

Rezaei, H., Panah, F. Y., Lim, C. J., & Sokhansanj, S. (2020). Pelletization of refuse-derived fuel with varying compositions of plastic, paper, organic and wood. Sustainability (Switzerland), 12(11), 4645. https://doi.org/10.3390/su12114645

Samadhiya, H., Gupta, R., & Agrawal, O. (2017). Disposal and management of temple waste: Current status and possibility of vermicomposting. International Journal of Advanced Research and Development, 2, 359-366.

Sarc, R., & Lorber, K. E. (2013). Production, quality and quality assurance of Refuse Derived Fuels (RDFs). Waste Management, 33(9), 1825–1834. https://doi.org/10.1016/j.wasman.2013.05.004

Schritt, H., & Pleissner, D. (2022). Recycling of organic residues to produce insulation composites: A review. Cleaner Waste Systems, 3, 100023. https://doi.org/10.1016/j.clwas.2022.100023

Schwarzböck, T., Aschenbrenner, P., Spacek, S., Szidat, S., Rechberger, H., & Fellner, J. (2018). An alternative method to determine the share of fossil carbon in solid refuse-derived fuels – Validation and comparison with three standardized methods. Fuel, 220(15), 916–930. https://doi.org/10.1016/j.fuel.2017.12.076

Shehata, N., Obaideen, K., Sayed, Enas T., Abdelkareem, Mohammad A., Mahmoud, Mohamed S., El-Salamony, AbdeL-Hay R., Mahmoud, Hamada M., Olabi, A.G. (2022). Role of refuse-derived fuel in circular economy and sustainable development goals. Process Safety and Environmental Protection, 163, 558–573. https://doi.org/10.1016/j.psep.2022.05.052

Shumal, M., Taghipour Jahromi, A. R., Ferdowsi, A., Mehdi Noorbakhsh Dehkordi, S. M., Moloudian, A., & Dehnavi, A. (2020). Comprehensive analysis of municipal solid waste rejected fractions as a source of Refused Derived Fuel in developing countries (case study of Isfahan- Iran): Environmental Impact and sustainable development. Renewable Energy, 146, 404–413. https://doi.org/10.1016/j.renene.2019.06.173

Siddiqi, M. H., Liu, X. min, Hussain, M. A., Qureshi, T., Waqas, M., Farooq, M., Iqbal, T., Nawas, S., & Nawaz, S. (2021). Evolution of kinetic and hydrothermal study of refused derived fuels: Thermo-gravimetric analysis. Energy Reports, 7, 1757–1764. https://doi.org/10.1016/j.egyr.2021.03.010

Sieradzka, M., Rajca, P., Zajemska, M., Mlonka-Mędrala, A., & Magdziarz, A. (2020). Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software - Ansys Chemkin-Pro. Journal of Cleaner Production, 248, 119277. https://doi.org/10.1016/j.jclepro.2019.119277

Sikarwar, V. S., Masláni, A., Hlína, M., Fathi, J., Mates, T., Pohorelý, M., Meers, E., Šyc, M., Jeremiás, M. (2022). Thermal plasma assisted pyrolysis and gasification of RDF by utilizing sequestered CO2as gasifying agent. Journal of CO2 Utilization, 66, 102275. https://doi.org/10.1016/j.jcou.2022.102275

Singh, A., Jain, A., Sarma, B. K., Abhilash, P. C., & Singh, H. B. (2013). Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida. Waste management, 33(5), 1113-1118. https://doi.org/10.1016/j.wasman.2013.01.022

Singh, P., Borthakur, A., Singh, R., Awasthi, S., Pal, D. B., Srivastava, P., Tiwary, D. & Mishra, P. K. (2017). Utilization of temple floral waste for extraction of valuable products: A close loop approach towards environmental sustainability and waste management. Pollution, 3(1), 39-45. https://doi.org/10.22059/poll.2017.59570

Smoliński, A., Wojtacha-Rychter, K., Król, M., Magdziarczyk, M., Polański, J., & Howaniec, N. (2022). Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas. Energy, 254(Part A), 124210. https://doi.org/10.1016/j.energy.2022.124210

Suantara, P., Sumantra, K., Sudiana, A. A. K., & Wijaya, I. (2020). Physicochemical Properties Of Water Characterization In Petitenget Temple Estuary, Badung Regency. International Journal of Applied Science and Sustainable Development, 2(2), 38–41.

Suryawan, I. W. K., Septiariva, I. Y., Widanarko, D. U. F., Qonitan, F. D., Sarwono, A., Sari, M. M., Prayogo, W., Arifianingsih, N.N., Suhardono, S., Lim, J.-W. (2024). Enhancing Energy Recovery from Wastewater Treatment Plant Sludge through Carbonization. Energy Nexus, 14(21), 100290. https://doi.org/10.1016/j.nexus.2024.100290

Tihin, G. L., Mo, K. H., Onn, C. C., Ong, H. C., Taufiq-Yap, Y. H., & Lee, H. V. (2023). Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing. Alexandria Engineering Journal, 84, 153–174. https://doi.org/10.1016/j.aej.2023.10.043

Widyatmoko, H., Sintorini, M. M., Suswantoro, E., Sinaga, E., & Aliyah, N. (2021). Potential of refused derived fuel in Jakarta. IOP Conference Series: Earth and Environmental Science, 737(1), 012005. Institute of Physics. https://doi.org/10.1088/1755-1315/737/1/012005

Wijaya, I. M. W., & Putra, I. K. A. (2021). Potensi daur ulang sampah upacara adat di Pulau Bali. Jurnal Ecocentrism, 1(1), 1–8. https://doi.org/10.36733/jeco.v1i1.1763

Wijaya, I. M. W., Ranwella, K. B. I. S., Revollo, E. M., Widhiasih, L. K. S., Putra, P. E. D., and Junanta, P. P. (2021). Recycling Temple Waste into Organic Incense as Temple Environment Preservation in Bali Island. Jurnal Ilmu Lingkungan , 19(2), 365–371. https://doi.org/10.14710/jil.19.2.365

Wijaya, I. M. W., Wiratama, I. G. N. M., & Putra, I. K. A. (2023). Patent No. IDS000006518. Indonesia.

Wijaya, I. M. W., Wiratama, I. G. N. M., Putra, I. K. A., & Atmaja, N. P. C. D. (2023). Unlocking the Energy Potential of Temple Waste and Coconut Fiber through Refuse-Derived Fuel Production toward Sustainable Energy. Ecological Engineering and Environmental Technology, 24(7), 19–29. https://doi.org/10.12912/27197050/169362

Wijaya, M. W., Wiratama, G. N. M., Putra, K. A., & Aris, A. (2023). Refuse Derived Fuel Potential Production from Temple Waste as Energy Alternative Resource in Bali Island. Journal of Ecological Engineering, 24(4), 288–296. https://doi.org/10.12911/22998993/161015

Wiyono, A., Saw, L. H., Anggrainy, R., Husen, A. S., Purnawan, Rohendi, D., Gandidi, Indra M., Adanta, D., & Pambudi, N. A. (2021). Enhancement of syngas production via co-gasification and renewable densified fuels (RDF) in an open-top downdraft gasifier: Case study of Indonesian waste. Case Studies in Thermal Engineering, 27, 101205. https://doi.org/10.1016/j.csite.2021.101205

Yadav, I., Juneja, S. K., & Chauhan, S. (2015). Temple waste utilization and management: A review. International Journal of Engineering Technology Science and Research, 2, 14-19.

Yadav, I., Singh, S., Juneja, S. K., & Chauhan, S. (2018). Quantification of the temple waste of Jaipur city. Recent Trends in Agriculture. Food Science, Forestry, Horticulture, Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences and Climate Change, 1-3.

Zaini, I. N., Wen, Y., Mousa, E., Jönsson, P. G., & Yang, W. (2021). Primary fragmentation behavior of refuse derived fuel pellets during rapid pyrolysis. Fuel Processing Technology, 216, 106796. https://doi.org/10.1016/j.fuproc.2021.106796

Zajemska, M., Magdziarz, A., Iwaszko, J., Skrzyniarz, M., & Poskart, A. (2022). Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Fuel, 320, 123981. https://doi.org/10.1016/j.fuel.2022.123981

Zhang, K., Zheng, Z., Feng, L., Su, J., & Li, H. (2023). A byproduct gas distribution model for production users considering calorific value fluctuation and supply patterns in steel plants. Alexandria Engineering Journal, 76, 821–834. https://doi.org/10.1016/j.aej.2023.06.063

Zhou, X., Liu, W., Zhang, P., & Wu, W. (2016). Study on Heavy Metals Conversion Characteristics During Refused Derived Fuel Gasification Process. Procedia Environmental Sciences, 31, 514–519. https://doi.org/10.1016/j.proenv.2016.02.070