Application of microorganisms to determine the impact of infiltration layer and season on pit latrine groundwater contamination
Main Article Content
Abstract
This study was necessitated as a result of the frequent cases of diarrhoea observed among the students of the researcher. The researcher employed faecal indicator bacteria to assess the impact of the infiltration layer and seasonal variations on groundwater contamination from pit latrines in the municipalities where the students reside. The main experimental materials consisted of water samples collected from 15 randomly selected wells in the Tano Districts of Ghana. Total coliforms, faecal coliforms, and enterococci were used as faecal indicators. The Most Probable Number (MPN) method was employed to determine the presence of faecal indicators in the water samples. The results showed that enterococci and faecal coliforms were reliable indicators of human faecal contamination than total coliforms. The study revealed that coliform level (indicating pit latrine groundwater contamination) increased with greater pit depth and lower static water levels. Based on these findings, it is recommended that the future studies on human faecal contamination prioritize enterococci and faecal coliforms over total coliforms as indicators. To mitigate groundwater contamination from pit latrines, the equation EC = 0.12(PLD) – 0.09(SWL) + 2.37 can be applied to predict a safer infiltration layer between the bottom of pit latrines and the water table.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aulya, W., Fadhliani, F., & Mardina, V. (2020). Analysis of coliform and colifecal total pollution test on various types of drinking water using the MPN (Most Probable Number) method. Serambi Journal of Agricultural Technology, 2(2). 64 - 72. https://doi.org/10.32672/sjat.v2i2.2416
Awuah, F. (2012). Impact of Pit Latrines on Groundwater in Some Selected Towns in the Tano Districts (Doctoral dissertation). Departmenet of Theoretical and Pplied Biology. Kwame Nkrumah University of Science and Technology, Kumasi. Available from: https://ir.knust.edu.gh/items/0b79d983-6c75-45de-9e49-d9c8d22c9888/full
Awuah, F., Abaidoo, R. C., & Badu, K. (2020). Determination of faecal contamination of the groundwater resources from Tano dstricts districts of Ghana. European Scientific Journal, 16(24), 173. https://doi.org/10.19044/esj.2020.v16n24p173
Bakari, S. S., Suleiman, Z. N., Ali, H. R., & Kai, K. H. (2023). Impacts of Pit latrines on Groundwater Quality in Squatter Settlements in Zanzibar. Earth & Environmental Science Research & Reviews, 6(3). 487-496. https://doi.org/10.21203/rs.3.rs-2652203/v1
Baloyi, R. S., & Diamond, R. E. (2019). Variable water quality of domestic wells emphasizes the need for groundwater quality monitoring and protection: Stinkwater, Hammanskraal, Gauteng. Water SA, 45(2), 216-224. https://doi.org/10.4314/wsa.v45i2.08
Banerjee, G. (2011). Underground pollution travel from leach pits of on-site sanitation facilities: a case study. Clean Technologies and Environmental Policy, 13(3), 489-497. https://doi.org/10.1007/s10098-010-0331-3
Bartram, J., Cotruvo J., Exner M., Fricker, C., and Glasmacher, A. (2003), Heterotrophic Plate Counts and Drinking-Water Safety, the Significance of HPCs for Water Quality and Human Health. IWA Publishing, London. https://iris.who.int/bitstream/handle/10665/42612/9241562269.pdf [Accessed 7th October 2024].
Basu, A., Behera, M., Maharana, R., Kumar, M., Dhal, N. K., Tamhankar, A. J., Mishra. A., Lundborg, C. S. & Tripathy, S. K. (2021). To unsnarl the mechanism of disinfection of Escherichia coli via visible light assisted heterogeneous photo-Fenton reaction in presence of biochar supported maghemite nanoparticles. Journal of Environmental Chemical Engineering, 9(1), 104620. https://doi.org/10.1016/j.jece.2020.104620.
Benediktsdóttir, E., Gunnarsdóttir, M. J., Ómarsdóttir, B. D., Sigurjónsson, V. Í., & Gardarsson, S. M. (2020). Virus inactivation in groundwater in a postglacial lava field in arctic climate. Letters in Applied Microbiology, 70(4), 282–289. https://doi.org/10.1111/lam.13271.
Capone, D., Buxton, H., Cumming, O., Dreibelbis, R., Knee, J., Nalá, R., Ross, I. & Brown, J. (2020). Impact of an intervention to improve pit latrine emptying practices in low income urban neighborhoods of Maputo, Mozambique. International Journal of Hygiene and Environmental Health, 226, 113480. https://doi.org/10.1016/j.ijheh.2020.113480.
Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Mapping fecal pollution in rural groundwater supplies by means of artificial intelligence classifiers. Journal of Hydrology, 577, 124006. https://doi.org/10.1016/j.jhydrol.2019.124006.
Ercumen, A., Prottas, C., Harris, A., Dioguardi, A., Dowd, G., & Guiteras, R. (2020). Poultry Ownership Associated with Increased Risk of Child Diarrhea: Cross-Sectional Evidence from Uganda. The American Journal of Tropical Medicine and Hygiene, 102(3), 526-533. https://doi.org/10.4269/ajtmh.19-0012
Ferrer, N., Folch, A., Masó, G., Sanchez, S., & Sanchez-Vila, X. (2020). What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries? Journal of Contaminant Hydrology, 228, 103556. https://doi.org/10.1016/j.jconhyd.2019.103556
Gauld, J. S., Olgemoeller, F., Nkhata, R., Li, C., Chirambo, A., Morse, T., Gordon, M.A., Read, J.M., Heyderman, R.S, Kennedy, N., Diggle, P. J. & Feasey, N.A. (2020). Domestic river water use and risk of typhoid fever: results from a case-control study in Blantyre, Malawi. Clinical Infectious Diseases, 70(7), 1278-1284. https://doi.org/10.1093/cid/ciz405
Gokçekuş, H., Kassem, Y., Yunusa, N., Khidre, M., John, S. O., Usman, S., Yahuza, M.S. & Sadiq, M. (2020). Study on Pit Latrine Minimum Design Requirement and Considerations in Northern Nigeria. International Journal of Scientific & Technology Research. 9(4)1802-1809
Graham, J. P., & Polizzotto, M. L. (2013). Pit latrines and their impacts on groundwater quality: a systematic review. Environmental Health Perspectives, 121(5), 521-530. https://doi.org/10.1289/ehp.12060
Gwenzi, W., Marumure, J., Makuvara, Z., Simbanegavi, T. T., Njomou-Ngounou, E. L., Nya, E. L., ... & Rzymski, P. (2023). The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? Science of the Total Environment, 879, 163179. https://doi.org/10.1016/j.scitotenv.2023.163179.
Holcomb, D. A., Knee, J., Sumner, T., Adriano, Z., de Bruijn, E., Nalá, R., ... & Stewart, J. R. (2020). Human fecal contamination of water, soil, and surfaces in households sharing poor-quality sanitation facilities in Maputo, Mozambique. International Journal of Hygiene and Environmental Health, 226, 113496. https://doi.org/10.1016/j.ijheh.2020.113496
Humphries, B., Weaver, L., Burbery, L., Webber, J., Morgan, L., & Gregor, J. (2020). Microbial pathogen removal from domestic effluent using coral sand in Kiribati. Journal of Applied Microbiology, 128(4), 1208–1220. https://doi.org/10.1111/jam.14555.
Lenaker, P. L., Pronschinske, M. A., Corsi, S. R., Stokdyk, J. P., Olds, H. T., Dila, D. K., & McLellan, S. L. (2024). A multi-marker assessment of sewage contamination in streams using human-associated indicator bacteria, human-specific viruses, and pharmaceuticals. Science of the Total Environment, 930, 172505. https://doi.org/10.1016/j.scitotenv.2024.172505
Lorowitz, W., Saxton, E., Sondossi, M., & Nakaoka, K. (2005). Integrating statistics with a microbiology laboratory activity. Microbiology Education, 6, 14–19. https://doi.org/10.1128/me.6.1.14-19.2005
Loyola, S., Sanchez, J. F., Maguiña, E., Canal, E., Castillo, R., Bernal, M., Meza, Y., Tilley, D.H, Oswald, W.E., Heitzinger, K., Lescano, A.G., Rocha, C.A. (2020). Fecal Contamination of Drinking Water Was Associated with Diarrheal Pathogen Carriage among Children Younger than 5 Years in Three Peruvian Rural Communities. The American Journal of Tropical Medicine and Hygiene, tpmd190337.
Lusk, M. G., Toor, G. S., Yang, Y. Y., Mechtensimer, S., De, M., & Obreza, T. A. (2017). A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Critical Reviews in Environmental Science and Technology, 47(7), 455-541. https://doi.org/10.1080/10643389.2017.1327787.
Biguioh, R.m., Adogaye, S. B. B., Nkamedjie Pete, P. M., Sanou Sobze, M., Kemogne, J. B., & Colizzi, V. (2020). Microbiological quality of water sources in the West region of Cameroon: quantitative detection of total coliforms using Micro Biological Survey method. BMC Public Health, 20, 1-7. https://doi.org/10.1186/s12889-020-8443-0
MacLaren, A. T., Colcord, B. L., & Foote, S. A. (2016). Stormwater Quality and Management Plan for Treasure Valley Scout Reservation.
Maramraj, K. K., Subbalakshmi, G., Ali, M. S., Dikid, T., Yadav, R., Sodha, S. V., Jain, S. K., & Singh, S. K. (2020). A community-wide acute diarrheal disease outbreak associated with drinking contaminated water from shallow bore-wells in a tribal village, India, 2017. BMC Public Health, 20(1), 1-8. https://doi.org/10.1186/s12889-020-8263-2.
Martin, N. A., Reynolds, L. J., Sala-Comorera, L., Nolan, T. M., Stephens, J. H., Gitto, A., ... & Meijer, W. G. (2024). Quantitative source apportionment of faecal indicator bacteria from anthropogenic and zoogenic sources of faecal contamination. Marine Pollution Bulletin, 205, 116591. https://doi.org/10.1016/j.marpolbul.2024.116591.
Martínez-Santos, P., Martín-Loeches, M., García-Castro, N., Solera, D., Díaz-Alcaide, S., Montero, E., & García-Rincón, J. (2017). A survey of domestic wells and pit latrines in rural settlements of Mali: implications of on-site sanitation on the quality of water supplies. International Journal of Hygiene and Environmental Health, 220(7), 1179-1189. https://doi.org/10.1016/j.ijheh.2017.08.001.
McGill, B. M., Altchenko, Y., Hamilton, S. K., Kenabatho, P. K., Sylvester, S. R., & Villholth, K. G. (2019). Complex interactions between climate change, sanitation, and groundwater quality: a case study from Ramotswa, Botswana. Hydrogeology Journal, 27(3), 997-1015. https://doi.org/10.1007/s10040-018-1901-4.
Mertens, A., Arnold, B. F., Benjamin-Chung, J., Boehm, A. B., Brown, J., Capone, D., Clasen, T., Fuhrmeister, E., Grembi, J.A., Holcomb, D., Knee, J., Kwong, L.H., Lin, A., Luby, S.P., Nala, R., Nelson, K., Njenga, S.M., Null, C., Pickering, A.J., Rahman, M., Reese, H.E., Steinbaum, L., Stewart, J., Thilakaratne, R., Cumming, O., Colford, J.M. & Ercumen, A. (2023). Effects of water, sanitation, and hygiene interventions on detection of enteropathogens and host-specific faecal markers in the environment: a systematic review and individual participant data meta-analysis. The Lancet Planetary Health, 7(3), e197-e208. https://doi.org/10.1016/s2542-5196(23)00028-1.
Miezah, K., Obiri-Danso, K., Kádár, Z., Fei-Baffoe, B., & Mensah, M. Y. (2015). Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Management, 46, 15-27. https://doi.org/10.1016/j.wasman.2015.09.009.
Murei, A., Kamika, I., & Momba, M. N. B. (2024). Selection of a diagnostic tool for microbial water quality monitoring and management of faecal contamination of water sources in rural communities. Science of the Total Environment, 906, 167484. https://doi.org/10.1016/j.scitotenv.2023.167484.
Rappuoli, R., Young, P., Ron, E., Pecetta, S., & Pizza, M. (2023). Save the microbes to save the planet. A call to action of the International Union of the Microbiological Societies (IUMS). One Health Outlook, 5(1), 5. https://doi.org/10.1186/s42522-023-00077-2.
Sepehrnia, N., Memarianfard, L., Moosavi, A. A., Bachmann, J., Guggenberger, G., & Rezanezhad, F. (2017). Bacterial mobilization and transport through manure enriched soils: Experiment and modeling. Journal of Environmental Management, 201, 388-396. https://doi.org/10.1016/j.jenvman.2017.07.009.
Sessitsch, A., Wakelin, S., Schloter, M., Maguin, E., Cernava, T., Champomier-Verges, M. C., Charles, T.C., Cotter, P.D, Ferrocino, I., Kriaa, Aicha., Lebre, P., Cowan, D., Lange, L. Kiran, S., Markiewich, L., Meisner, A., Olivares, M., Sarand, I., Schelkle, B., Selvin, J., Smidt, H., van Overbeek, L., Berg G., Cocolin, L., Sanz, Y., fernandes Jr., W.L., Liu, S.J., Ryan, M., Singh, B., & Kostic, T. (2023). Microbiome interconnectedness throughout environments with major consequences for healthy people and a healthy planet. Microbiology and Molecular Biology Reviews, 87(3), e00212-22. https://doi.org/10.1128/mmbr.00212-22.
Solaiman, S., Allard, S. M., Callahan, M. T., Jiang, C., Handy, E., East, C., ... & Micallef, S. A. (2020). Longitudinal assessment of the dynamics of Escherichia coli, total coliforms, Enterococcus spp., and Aeromonas spp. in alternative irrigation water sources: a CONSERVE Study. Applied and Environmental Microbiology, 86(20), e00342-20. https://doi.org/10.1128/AEM.00342-20
Sugden S., (2006). The Microbiological Contamination of Water Supplies, Sandy Cairncross; Well Factsheet. Retrieved from http://www.lboro.ac.uk/well/resource/fact-sheets/factsheet-htm/contamination.htm
Tano North Municipal Assembly (2023). Water, Saniytation and Hgiene (WASH) Plan. [Unpublished document]. Retrieved from https://www.ircwash.org/sites/default/files/084-202310wash_masterplan_tano_northdef_web.pdf [Accesed on 22/07/2024]
Tano South Municipal Assembly (2021). Medium-term Development Plant 2018-2021 under the “An Agenda for Jobs: Creating Prosperity and Equal Opportunity for All” [Unpublished data]. Retrieved from https://ndpc.gov.gh/media/AH_Tano_South.pdf [Accesed on 16/07/2024].
Trimmer, J. T., Miller, D. C., Byrne, D. M., Lohman, H. A., Banadda, N., Baylis, K., Cook, S.M., Cusick, R.D., Jjuuko, F., Margenot, A.J., Zerai, A., & Guest, J. S. (2020). Re-envisioning sanitation as a human-derived resource system. Environmental Science & Technology, 54(17), 10446-10459. https://doi.org/10.1021/acs.est.0c03318.
WHO (2008). Guidelines for Drinking-Water Quality. Third edition incorporating first addendum. Vol. 1, Recommendations. Geneva. https://www.who.int/publications/i/item/9789241547611 [Accessed 20th June 2024]
WHO. (2023). Drinking water: Key facts. Retrieved on 21/10/22 from https://www.who.int/news-room/fact-sheets/detail/drinking-water [Accessed 20th June 2024]
Wolf, J., Hubbard, S., Brauer, M., Ambelu, A., Arnold, B. F., Bain, R., Bauza, V., Brown, J., Caruso, B. A., Clasen, T., Colford, J. M., Jr, Freeman, M. C., Gordon, B., Johnston, R. B., Mertens, A., Prüss-Ustün, A., Ross, I., Stanaway, J., Zhao, J. T., Cumming, O., & Boisson, S. (2022). Effectiveness of interventions to improve drinking water, sanitation, and handwashing with soap on risk of diarrhoeal disease in children in low-income and middle-income settings: a systematic review and meta-analysis. Lancet (London, England), 400(10345), 48–59. https://doi.org/10.1016/S0140-6736(22)00937-0.
Yahaya, T. O., Bashar, D. M., Liman, U. U., Umar, J. A., Abdulrahim, A., & Gomo, C. B. (2023). Effects of Pit Latrines on Borehole and Well water in Maryland, Lagos, Nigeria. Journal of Advances in Environmental Health Research, 11(1), 20-27. https://doi.org/10.34172/jaehr.2023.03.