Subsidence analysis in DKI Jakarta using Differential Interferometry Synthetic Aperture Radar (DInSAR) Method

Main Article Content

Cyntia Cyntia I Putu Pudja

Abstract

Land subsidence in DKI Jakarta influenced by several key factors, including the number of buildings that increase the load above the surface. There are still many people who explore groundwater sources as the principal source of clean water. Also,  the soil type is dominated by alluvial. This alluvial deposit can be one of the parameters for soil deformation in the form of land subsidence and uplift in land surface because basically, alluvial soil types have a susceptibility to the load support power above. So that the land subsidence in DKI Jakarta is relatively continuous. To find out the land subsidence is used a high-tech method,  Differential Interferometry Synthetic Aperture Radar (DInSAR) satellite image of radar data (SAR Sentinel-1A) in 2017. The result shows the land subsidence in the average value of DKI Jakarta which is about -3.685 cm/year and the highest subsidence happened in the West Jakarta district about -5.850 cm/year in average.

Article Details

Section
Articles

References

Abidin, H. Z., Darmawan, D., Meilano, I., Kasuma, M. A., Kahar, J., Cecep, S., … Sudibyo, Y. (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards, 23(2–3), 365–387.

Abidin, H. Z., Gumilar, I., Andreas, H., Sidiq, T. P., & Fukuda, Y. (2013). On the roles of geospatial information for risk assessment of land subsidence in urban areas of Indonesia. In S. Zlatanova, R. Pieter, A. Dilo, & H. Scholten (Eds.), Intelligent systems for crisis management (pp. 277–288). Berlin Heidelberg: Springer.

Al-Akbar, T. O., Prasetyo, Y., & Wijaya, A. P. (2015). Analisis dampak penurunan muka tanah terhadap tingkat ekonomi menggunakan kombinasi metode DInSAR dan SIG (Studi kasus: Kota Semarang). Jurnal Geodesi Undip, 4(4), 136–143.

Bourgeau-chavez, L., Riordan, K., Miller, N., & Nowels, M. (2009). Improving wetland characterization with multi-sensor, multi-temporal SAR and optical/infrared data fusion. Advances in Geoscience and Remote Sensing, 679–708.

BPS. (2015). Data Statistik Provinsi DKI Jakarta. Retrieved from https://jakarta.bps.go.id

Delinom, R. M. (2015). Ancaman bawah permukaan Jakarta: Tak Terlihat, Tak Terpikirkan, dan Tak Terduga. Jakarta: LIPI Press.

ESA. (2007). Part A InSAR processing: Guidelines for SAR interferometry processing and interpretation (tutorial). Netherlands: ESA Publications.

ESA. (2015). What is Sentinel-1? Retrieved from https://earth.esa.int/ web/guest/missions/esa-operational-eo-missions/sentinel-1

Ferrina, Q. (2015). Analisa amblesan dan penurunan muka air tanah dengan metode anomali gravity antar waktu (Studi Kasus: Jakarta). Sekolah Tinggi Meteorologi Klimatologi dan Geofisik.

Francis, P. W., Wadge, G., & Mouginis-Mark, P. J. (1996). Satellite monitoring of volcanoes. In R. Scarpa & R. I. Tilling (Eds.), Monitoring and mitigation of volcano hazards (pp. 257–298). New York: Springer Verlag.

Hartl, P. (1996). Synthetic aperture radar, theory, and applications. Faculty of the Geodesy-Delf University of Technology.

Murdohardono, D., & Sudarsono, Y. (1998). Land subsidence monitoring system in Jakarta. In Proceedings of Symposium on Japan–Indonesia IDNDR Project: Volcanology, Tectonics, Flood and Sediment Hazards (pp. 243–256). Bandung.

Soekardi, P., Djaeni, A., Soefner, H., Hobler, M., & Schmidt, G. (1986). Geological aspect of the aquifer system and the groundwater situation of the Jakarta Artesian Basin. In Seminar on Geological Mapping in the Urban Development, Economic and Social Commission for Asia and the Pacific. Bangkok.