Plant growth and total Nitrogen absorption rate in leachate with water hyacinth (Eichhornia crassipes)

Main Article Content

Dyah Wahyu Wijayanti
Wahyudi Budi Sediawan
Agus Prasetya


Phytoremediation is a simple technique of wastewater  processing by utilizing the plant activity to vanish, replace and stabilize or destroy the pollutant either organic compound or inorganic. This research utilizes Eichhornia crassipes as the biofilter in handling the leachate produced from organic waste degradation. The purposes of this research are to find out the plant growth rate and total Nitrogen (N) absorption in leachate by the Eichhornia crassipes. The experiment shows that the concentration of leachate affects the absorption rate of total N and wet weight of the plant. The model was fit to the experimental data. The metabolism reaction rate constant ( ) and absorption rate constant ( ) at leachate concentration 5%, 10%, 15%, 20%, 25% and 30% were measured. The highest reaction rate constant and absorption rate constant were  5% of leachate concentration where = 0.008042/day and = 2.30811/day, whilst at the leachate concentration of 30% reaction rate constant and absorption rate constant were the lowest where it reached = 0.00029/day and = 0.04576/day. The absorption ability of water hyacinth to absorb the N which contained in the leachate was affected by the metabolism reaction rate of nitrogen in the plant and the reaction rate of nitrogen degradation into ammonia (NH4) and nitric ion (NO3) in the plant root. The leachate concentration affected the efficiency of N absorption by the water hyacinth. The efficiency of N absorption at leachate concentration of 5; 10; 15; 20; 25 and 30 were 89.81%, 68.99%, 49.51%, 36.32%, 30.28% and 21.64% respectively. Overall, this technique presents a simple technique approach and the utilization of elements contained in the leachate as the nutrition for plant.

Article Details

How to Cite
Wijayanti, D. W., Sediawan, W. B., & Prasetya, A. (2019). Plant growth and total Nitrogen absorption rate in leachate with water hyacinth (Eichhornia crassipes). Sustinere: Journal of Environment and Sustainability, 3(2), 117–126.
Affandi, D. (2003). Pengaruh Waktu Tinggal Limbah dan Tanaman Enceng Gondok Terhadap Penurunan Kadar Hg dalam Limbah Pencucian Emas. Skripsi STTL “YLH,” Yogyakarta.

Al-Rubaie, A. S. A., & Al-Kubaisi, A.-R. A. (2015). Removal of Lead from Water by Using Aquatic Plants (Ceratophyllum demersum and Eichhorina crassipes). International Journal of Current Microbiology and Applied Sciences, 4(11), 45–51.

Damanhuri, E. (1993). Peranan Biodegradasi Sampah Dalam Mempercepat Stabilisasi Lahan Urug Saniter. Bandung: PAU Bioteknologi.

Dwidjoseputro, D. (1990). Pengantar Fisiologi Tumbuhan. Jakarta: Gramedia Pustaka Utama.

Fadhillah, W., Purba, E., & Elfiati, D. (2018). Utilization of water hyacinth plants (Eichornia Crassipes), Jasmine water (Echinodorus Paleafolius) and apu wood (Pistiastratiotes) on decreasing level of liquid waste poisonous of tofu. Journal of Community Research and Service, 1(2), 35–42.

Fazeli, A., Bakhtvar, F., Jahanshaloo, L., Azwadi, N., Sidik, C., & Bayat, A. E. (2016). Malaysia â€TM s stand on municipal solid waste conversion to energy : A review. Renewable and Sustainable Energy Reviews, 58, 1007–1016.

Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). J. Appl. Aci. Environ. Manage., 14(2), 43–49.

Jiang, Y., Lei, M., Duan, L., & Longhurst, P. (2015). Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass and Bioenergy, 83, 328–339.

Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiol. Biotechnol., 81, 629–636.

Mal, R., Sampaio, P. R. I., & Parolin, P. (2015). Biofilter efficiency of Eichhornia crassipes in wastewater treatment of fish farming in Amazonia Eficiencia de Eichhornia crassipes como biofiltro en el tratamiento de aguas residuales de la. ɸYTON: International Journal of Experimental Botany, 9457, 244–251.

Mardalena, Faizal, M., & Napoleon, A. (2018). The absorption of iron (fe) and manganes (Mn) from coal mining wastewater with phytoremediation technique using floating fern (Salbvinia natans), water lettuce (Pistia stratiotes) and water hyacinth (Eichornia crassipes). BIOVALENTA: Biological Research Journal, 4(1), 1–7.

Marianto, & Maryanto, A. (2002). Merawat Tanaman Air. Jakarta: PT. Agro Media Pustaka.

Mcisaac, G. (2003). Surface Water Pollution by Nitrogen Fertilizers. Encyclopedia of Water Science, 950.

Mishra, S., & Maiti, A. (2016). The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environmental Science and Pollution Research, (September).

Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006). Leachate Characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118(1–3), 435–456.

Ochekwu, E. B., & Madagwa, B. (2013). Phytoremediation potentials of water Hyacinth . Eichhornia Crassipes ( mart .) Solms in crude oil polluted water Phytoremediation potentials of water. J. Appl. Aci. Environ. Manage., 17(4), 503–507.

Privya, M., & Panicker, V. P. (2019). Plants as biofilter. World Journal of Pharmaceutical Research, 8(6), 272–284.

Rodfriguez-Espinosa, P. ., Mendoza-Perez, J. ., Tabla-Hernancez, J., Martinez-Tavera, E., & Monroy-Mendieta, M. . (2018). Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter. International Journal of Phytoremediation, 20(1), 35–43.

Sayago, U. F. C., & Torres, C. A. G. (2017). Design, Development and Evaluation of a Laboratory-Scale Phytoremediation System Using Eichhornia Crassipes for the Treatment Design , Development , and Evaluation of a Laboratory-Scale Phytoremediation System Using Eichhornia Crassipes for the Treatment . TECCIENCIA, 12(22), 7–14.

Sutedjo, M. M. (2008). Pupuk dan Cara Pemupukan. Jakarta: Penerbit Rineka Cipta.

Tabinda, A. B., Irfan, R., Yasar, A., Iqbal, A., & Mahmood, A. (2018). Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove Chromium and Copper. Environmental Technology, 0(0), 1–6.

Tchobanoglous, G., Eliassen, R., & Theisen, H. (1977). Solid Wastes; Engineering Principles and Management Issues. McGraw-Hill.

Townsend, A. R., Howarth, R. W., Bazzaz, F. A., Booth, M. S., Cleveland, C. C., Collinge, S. K., … Wolfe, A. H. (2003). Human health effects of a changing global nitrogen cycle. Frontiers in Ecology and the Environment, 1(5), 240–246.

Yeesang, C., & Cheirsilp, B. (2011). Bioresource Technology Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3), 3034–3040.

Zaki, M. S., Fawzi, O. M., Mostafa, S. O., El-Zaher, M. F. A., & Ata, N. S. (2015). Xenobiotics and Bioremediation (Review). Nature and Science, 13(2), 113–115.

Zurbrügg, C., Gfrerer, M., Ashadi, H., Brenner, W., & Küper, D. (2012). Determinants of sustainability in solid waste management – The Gianyar Waste Recovery Project in Indonesia. Waste Management, 32, 2126–2133.