Treatment of leachate from Bantargebang Landfill using oxidation with H2O2

Main Article Content

Riang Ursada
Zahid Jidan Alfani
Arseto Yekti Bagastyo


Leachate produced from old landfills has a low level of biodegradability making it suitable for physico-chemical treatment. A low level of biodegradability is characterized by a concentration ratio of BOD5/COD ≤ 0.1. The leachate at the Bantargebang Integrated Waste Management Unit (UPST) has a BOD5/COD concentration ratio of 0.05. The current state of processing leachate at the wastewater treatment plant (IPAS) employs biological processing technology. This research uses inlet leachate from IPAS 3 UPST Bantargebang, with a batch system reactor. The reactor is a glass beaker with a capacity of 1 L, operated using a magnetic stirrer with a stirring speed of 200 rpm. The reactor is covered with aluminum foil to prevent oxidation caused by light. The dosage used is based on H2O2/COD concentration ratios, which are 1.0625 and 2.125. Reactions time applied are 60 minutes and 180 minutes. The initial pH levels of the leachate used are 5, 6, 7, and 8. The variations that have optimum values are at pH 6, H2O2/COD 2.125, and a 60-minute reaction time, resulting in average color removal, BOD5, COD, TSS, TN, and H2O2 reacted by 65%.

Article Details

How to Cite
Ursada, R. ., Jidan Alfani, Z., & Bagastyo, A. Y. (2023). Treatment of leachate from Bantargebang Landfill using oxidation with H2O2. Sustinere: Journal of Environment and Sustainability, 7(2), 134–146.

Abdullah, N., Aziz, H. A., Yusuf, N. N. A. N., Umar, M., & Amr, S. S. A. (2014). Potential of KMnO4 and H2O2 in treating semi-aerobic landfill leachate. Applied Water Science, 4, 303–309.

Adeyinka, J. S., & Rim-Rukeh, A. (1999). Effect of Hydrogen Peroxide on Industrial Waste Water Effluents: A Case Study of Warri Refining and Petrochemical Industry. Environmental Monitoring and Assessment, 59, 249–256.

Amor, C., Torres-Socías, E. De, Peres, J. A., Maldonado, M. I., Oller, I., Malato, S., & Lucas, M. S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. Journal of Hazardous Materials, 9, 261–268.

Aswadi, M. (2006). Pemodelan Fluktuasi Nitrogen (Nitrit) Pada Aliran Sungai Palu. SMARTek, 4(2), 112–125.

Atima, W. (2015). BOD dan COD sebagai parameter pencemaran air dan baku mutu air limbah. Jurnal Biology Science and Education, 4(1), 83–98.

Bagastyo, A. Y., Anggrainy, A. D., Tamas, I. N., & Herumurti, W. (2018). Advanced oxidation process of mature landfill leachate containing ferrous ion. EnvironmentAsia: The International Journal by the Thai Society of Higher Education Institutes on Environment, 11(1), 230–242.

Buana, S., Tambaru, R., Selamat, M. B., Lanuru, M., & Massinai, A. (2021). The role of salinity and Total Suspended Solids (TSS) to abundance and structure of phytoplankton communities in estuary Saddang Pinrang. IOP Conference Series: Earth and Environmental Science, 012081.

Evonik. (2022). Hydrogen Peroxide: Stability and Decomposition.

Jóźwiakowski, K., Marzec, M., Fiedurek, J., Kamińska, A., Gajewska, M., Wojciechowska, E., Wu, S., Dach, J., Marczuk, A., & Kowlaczyk-Juśko, A. (2007). Application of H2O2 to optimize ammonium removal from domestic wastewater. Separation and Purification Technology, 173, 357–363.

Kang, Y. W., Cho, M.-J., & Hwang, K.-Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Research, 33(5), 1247–1251.

Kim, S.-M., Geissen, S.-U., & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted fenton reaction. Water Science and Technology, 35(4), 239–248.

Ksibi, M. (2006). Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chemical Engineering Journal, 119(2–3), 161–165.

Kurniawan, T. A., Lo, W., & Chan, G. Y. S. (2006). Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal, 125(1), 35–57.

Kylefors, K., Andreas, L., & Lagerkvist, A. (2003). A comparison of small-scale, pilot-scale and large-scale tests for predicting leaching behaviour of landfilled wastes. Waste Management, 23(1), 45–59.

Marhaini, M., & Wibowo, H. S. (2016). Pengembangan proses oksidasi tingkat lanjut menggunakan fotokatalis TiO2 dengan penambahan H2O2 untuk pengolahan limbah cair industri pertambangan batubara. Jurnal Distilasi, 1(1), 51–56.

Pieczykolan, B., Barbusiński, K., & Płonka, I. (2012). COD removal from landfill leachate using H2O2, UV radiation and combination these processes. Environment Protection Engineering, 38(3), 5–13.

Prasetyaningtyas, K. (2021). Prakiraan Musim Hujan Tahun 2021/2022 di Indonesia. Badan Meteorologi Klimatologi Dan Geofisika.

Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 130(3), 468–493.

Said, N. I., & Hartaja, D. R. K. (2015). Pengolahan Air Lindi Dengan Proses Biofilter Anaerob-Aerob Dan Denitrifikasi. Pusat Teknologi Lingkungan, BPPT, 8(1), 1–20.

Sara, P. S., Astono, W., & Hendrawan, D. I. (2018). Kajian Kualitas Air di Sungai Ciliwung dengan Parameter BOD dan COD. Prosiding Seminar Nasional Cendekiawan 2018 Buku I.

Shokrollahzadeh, S., Golmohammad, F., Naseri, N., Shokouhi, H., & Arman-mehr, M. (2012). Chemical Oxidation for Removal of Hydrocarbons from Gas–Field Produced Water. Procedia Engineering, 42, 942–947.

Taradepa, O. (2021). Analisis kandungan Chemical Oxigen Demand (COD) dan Biochemmical Oxygen Demand (BOD) pada air sungai danau teluk Kelurahan Olak Kemang Kota Jambi. Universitas Jambi.

Tejera, J., Hermosilla, D., Gascó, A., Miranda, R., Alonso, V., Negro, C., & Blanco, Á. (2021). Treatment of mature landfill leachate by electrocoagulation followed by Fenton or UVA-LED photo-Fenton processes. Elsevier Logo Journals & Books Go to Journal Home Page - Journal of the Taiwan Institute of Chemical Engineers Journal of the Taiwan Institute of Chemical Engineers, 119, 33–44.

Thasilu, K., & Karthikeyan, J. (2016). Decolorisation and Degradation of C.I. Acid Green 1 by H2O2 and Fenton Oxidation Processes. American Journal of Environmental Engineering, 6(4), 105–109.

Tomperi, J., Isokangas, A., Tuuttila, T., & Paavola, M. (2022). Functionality of turbidity measurement under changing water quality and environmental conditions. Environmental Technology, 43(7), 1093–1101.

Tripathy, B. K., Ramesh, G., Debnath, A., & Kumar, M. (2019). Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters. Ultrasonics Sonochemistry, 54, 210–219.

UPST-DLHDKI Jakarta. (2022). Data-Data TPST Bantargeban UPST DLH DKI Jakarta.

USPTechnologies. (2022a). BOD and COD Removal Hydrogen Peroxide (H2O2).

USPTechnologies. (2022b). What factors contribute to the decomposition of H2O2?

Vogel, F., Harf, J., Hug, A., & von Rohr, P. R. (2000). The mean oxidation number of carbon (MOC)—a useful concept for describing oxidation processes. Water Research, 34(10), 2689–2702.

Warsudi, E. (2022). Prakiraan Musim Kemarau Tahun 2022 di Indonesia. Badan Meteorologi Klimatologi Dan Geofisika.

Yao, P. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10(2), S2567–S2574.

Yazıcı, E. Y., & Deveci, H. (2011). Factors Affecting Decomposition of Hydrogen Peroxide. In Ö. Y. Gülsoy, L. Ş. Ergün, N. M. Can, & İ. . Çelik (Eds.), Proceedings of the XIIth. International Mineral Processing Symposium (pp. 609–616).

Zhang, H., Choi, H. J., & Huang, C.-P. (2006). Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor. Journal of Hazardous Materials, 136(3), 618–623.