A comparative study of ferrous and persulfate catalysts for the H2O2/UV oxidation of batik wastewater

Main Article Content

Regita Syahra Ramadhan
Arseto Yekti Bagastyo

Abstract

The increasing number of batik industries in Indonesia may lead to water pollution due to wastewater containing high levels of organic pollutants. This study evaluated advanced oxidation processes (AOPs) utilising H2O2/UV to decolourise and remove organic contaminants (measured as chemical oxygen demand, COD) from batik wastewater. The study aims to compare the effectiveness of adding ferrous and persulfate as catalysts as catalyst in the H2O2/UV process, specifically evaluating the H2O2/Fe2+/UV and H2O2/S2O82-/UV processes. The results indicated that all treatment methods effectively decolourised and degraded COD in the batik wastewater. COD and colour removal achieved up to 96.51% and 78.70% for H2O2/UV, 97.20% and 83.53% for H2O2/Fe2+/UV, and 97.20% and 83.53% for H2O2/ S2O82-/UV, processes, respectively. Additionally, the use of persulfate as a catalyst accelerated the oxidation processes, reaching completion in 45 minutes compared to 60 minutes with the other catalyst.  

Article Details

How to Cite
Ramadhan, R. S., & Bagastyo, A. Y. (2024). A comparative study of ferrous and persulfate catalysts for the H2O2/UV oxidation of batik wastewater. Sustinere: Journal of Environment and Sustainability, 8(2), 230–241. https://doi.org/10.22515/sustinere.jes.v8i2.421
Section
Articles
References

Al-Musawi, T. J., Yilmaz, M., Mohebi, S., & Balarak, D. (2022). Ultraviolet radiation/persulfate/hydrogen peroxide treatment system for the degradation of acid blue 80 dye from a batch flow chemical reactor: effects of operational parameters, mineralization, energy consumption, and kinetic studies. Energy, Ecology and Environment, 7(6), 630–640. https://doi.org/10.1007/s40974-022-00250-9

Asha, T., Gandhimathi, R., Ramesh, S. ., & Nidheesh, P. . (2017). Treatment of Stabilized Leachate by Ferrous-Activated Persulfate Oxidative System. Journal of Hazardous, Toxic, and Radioactive Waste, 21(2), 4016012. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000328

Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials, 163(1), 109–114. https://doi.org/10.1016/j.jhazmat.2008.06.067

Benassi, J. C. (2021). Evaluation of color removal efficiencies and kinetic parameters of Fenton textile wastewater containing indigo blue Avaliação da eficiência de remoção de cor e parâmetros cinéticos dos. Brazilian Journal of Development, 7(11), 102327–102347. https://doi.org/10.34117/bjdv7n11-044

Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054

Buthiyappan, A., Abdul Aziz, A. R., & Wan Daud, W. M. A. (2015). Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments. 31(3), 263–302. https://doi.org/doi:10.1515/revce-2014-0039

Cetinkaya, S. G., Morcali, M. H., Akarsu, S., Ziba, C. A., & Dolaz, M. (2018). Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research, 28(4), 165–170. https://doi.org/10.1016/j.serj.2018.02.001

Çifçi, D. İ. (2023). Fe-Mn-textile waste synthesis for COD and color removal from textile wastewater by UV/S2O82− oxidation. International Journal of Environmental Science and Technology, 20(7), 7313–7324. https://doi.org/10.1007/s13762-023-04837-5

Ding, X., Gutierrez, L., Croue, J.-P., Li, M., Wang, L., & Wang, Y. (2020). Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison. Chemosphere, 253, 126655. https://doi.org/10.1016/j.chemosphere.2020.126655

El-Gawad, H. A., Ghaly, M. Y., Hussieny, N. F. El, Kreem, M. A., & Reda, Y. (2024). Novel collector design and optimized photo ‑ fenton model for sustainable industry textile wastewater treatment. Scientific Reports, 14, 8573. https://doi.org/10.1038/s41598-024-58610-w

Eslami, A., Moradi, M., Ghanbari, F., & Mehdipour, F. (2013). Decolorization and COD removal from real textile wastewater by chemical and electrochemical Fenton processes: a comparative study. 1–8.

Fauzi, A. R., & Rachmanto, T. A. (2018). Kombinasi fenton dan fotokatalis sebagai alternatif pengolahan limbah batik. Jurnal Envirotek, 10(1), 37–45. https://doi.org/10.33005/envirotek.v10i1.1166

Güneş, E., Çifçi, D. I., Dinçer, A. R., & Güneş, Y. (2021). Removal of COD , aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption , ozonation , and advanced oxidation processes. Turkish Journal of Chemistry, 45(3), 551–565. https://doi.org/10.3906/kim-2010-48

Hayat, H., Mahmood, Q., Pervez, A., Bhatti, Z. A., & Baig, S. A. (2015). Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 154, 149–153. https://doi.org/10.1016/j.seppur.2015.09.025

Hidayahtullah, M. C., Frannita, E. L., & Sugiyanto. (2022). Perancangan motif batuk kontemporer dengan warna indigo di Industri batik Jetis Sidoarjo. Prosiding Seminar Nasional Industri Kerajinan Dan Batik 2022, 1–15.

Ilhan, F., Yetilmexsoy, K., Kabuk, H. A., Ulucan, K., Coskun, T., & Akoglu, B. (2017). Evaluation of operational parameters and its relation on the stoichiometry of fenton’s oxidation to textile wastewater. Chemical Industry & Chemidal Engineering Quarterly, 23(1), 11–19. https://doi.org/10.2298/CICEQ150907048I

Kang, S. F., Liao, C. H., & Po, S. T. (2000). Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere, 41(8), 1287–1294. https://doi.org/10.1016/s0045-6535(99)00524-x

Kaya, Ş., & Aşçı, Y. (2019). Evaluation of Color and COD Removal by Fenton and Photo-Fenton Processes from Industrial Paper Wastewater. Journal of the Institute of Science and Technology, 9(3), 1539–1550. https://doi.org/10.21597/jist.507181

Kehinde, F. O., & Abdul Aziz, H. (2015). Influence of Operating Conditions on the Persulfate Oxidation of Textile Waste Water at Ambient Temperature. In Applied Mechanics and Materials, 802, 454–459. https://doi.org/10.4028/www.scientific.net/amm.802.454

Kencana, E. M., & Radityaningrum, A. D. (2022). Kombinasi Filtrasi dan Fitoremediasi untuk Pengolahan Limbah Cair Industri Batik. Dampak: Jurnal Teknik Lingkungan Universitas Andalas, 19(2), 56–65. https://doi.org/10.25077/dampak.19.2.56-65.2022

Kiani, R., Mirzaei, F., Ghanbari, F., Feizi, R., & Mehdipour, F. (2020). Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon. Journal of Water Process Engineering, 38, 101623. https://doi.org/10.1016/j.jwpe.2020.101623

Kordbacheh, F., & Heidari, G. (2023). Water Pollutants and Approaches for Their Removal. Materials Chemistry Horizons, 2(2), 139–153. https://doi.org/10.22128/mch.2023.684.1039

Larasati, F. U., Aini, N., Hery, A., & Irianti, S. (2021). Proses pembuatan batuk tulis remekan di Kecamatan Ngantang. Prosiding Pendidikan Teknik Tata Boga Busana FT UNY, 16(1).

Lucas, M. S., & Peres, J. A. (2009). Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study. Journal of Hazardous Materials, 168(2), 1253–1259. https://doi.org/10.1016/j.jhazmat.2009.03.002

Micheletto, J., de Torres, M. A., de Paula, V. de C. S., Cerutti, V. E., Pagioro, T. A., Cass, Q. B., Martins, L. R. R., de Liz, M. V., & de Freitas, A. M. (2020). The solar photo-Fenton process at neutral pH applied to microcystin-LR degradation: Fe2+, H2O2 and reaction matrix effects. Photochemical & Photobiological Sciences, 19(8), 1078–1087. https://doi.org/10.1039/d0pp00050g

Nidheesh, P. V, Divyapriya, G., Ezzahra Titchou, F., & Hamdani, M. (2022). Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Separation and Purification Technology, 293, 121115. https://doi.org/10.1016/j.seppur.2022.121115

Palani, M., Sharmila, P. N. P., Rajoo, B., & Sharmila, S. (2016). Optimization of treatment efficiency of UV/H2O2 process on simulated textile industry wastewater. Desalination and Water Treatment, 57(56), 1–12. https://doi.org/10.1080/19443994.2016.1172983

Patil, A. D., & Raut, P. (2014). Treatment of textile wastewater by Fenton’s process as a Advanced Oxidation Process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 29–32. https://doi.org/10.9790/2402-081032932

Qi, L., Lu, W., Tian, G., Sun, Y., Han, J., & Xu, L. (2020). Enhancement of Sono-Fenton by P25-Mediated Visible Light Photocatalysis: Analysis of Synergistic Effect and Influence of Emerging Contaminant Properties. In Catalysts (Vol. 10, Issue 11, p. 1297). https://doi.org/10.3390/catal10111297

Ramadhanti, Y. (2023). Peran Katalis Dalam Reaksi Kimia : Mekanisme Dan Aplikasi. Hexatech: Jurnal Ilmiah Teknik, 2(2), 74–78. https://doi.org/10.55904/hexatech.v2i2.915

Rosa, J. M., Tambourgi, E. B., Vanalle, R. M., Carbajal Gamarra, F. M., Curvelo Santana, J. C., & Araújo, M. C. (2020). Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents. Journal of Cleaner Production, 246, 119012. https://doi.org/10.1016/j.jclepro.2019.119012

Sharma, A., Ahmad, J., & Flora, S. J. S. (2018). Application of advanced oxidation processes and toxicity assessment of transformation products. Environmental Research, 167, 223–233. https://doi.org/10.1016/j.envres.2018.07.010

Shen, M., Song, B., Zhou, C., Hu, T., Zeng, G., & Zhang, Y. (2022). Advanced oxidation processes for the elimination of microplastics from aqueous systems: Assessment of efficiency, perspectives and limitations. Science of The Total Environment, 842, 156723. https://doi.org/10.1016/j.scitotenv.2022.156723

Shiroudi, A., Deleuze, M. S., & Canneaux, S. (2014). Theoretical Study of the Oxidation Mechanisms of Naphthalene Initiated by Hydroxyl Radicals: The OH-Addition Pathway. The Journal of Physical Chemistry A, 118(26), 4593–4610. https://doi.org/10.1021/jp411327e

Singh, S. B., & Tandon, P. K. (2014). Catalysis: A Brief Review on Nano-Catalyst. Journal of Energy and Chemical Engineering, 2(3), 106–115. https://doi.org/10.55904/hexatech.v2i2.915

So, H. L. (2023). Homogeneous and heterogeneous photodegradation of naphthalene and 1-naphthol in water by iron-catalysts. Hong Kong Polytechnic University.

Tuncer, N., & Sönmez, G. (2023). Removal of COD and Color from Textile Wastewater by the Fenton and UV/H2O2 Oxidation Processes and Optimization. Water, Air, & Soil Pollution, 234(2), 70. https://doi.org/10.1007/s11270-023-06095-0

Wang, X., Jing, J., Zhou, M., & Dewil, R. (2023). Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chinese Chemical Letters, 34(3), 107621. https://doi.org/10.1016/j.cclet.2022.06.044

Yang, S., Cheng, J., Sun, J., Hu, Y., & Liang, X. (2013). Defluorination of Aqueous Perfluorooctanesulfonate by Activated Persulfate Oxidation. PLOS One, 8(10), 6–15. https://doi.org/10.1371/journal.pone.0074877

Zawadzki, P., & Deska, M. (2021). Degradation Efficiency and Kinetics Analysis of an Advanced Oxidation Process Utilizing Ozone, Hydrogen Peroxide and Persulfate to Degrade the Dye Rhodamine B. In Catalysts (Vol. 11, Issue 8, p. 974). https://doi.org/10.3390/catal11080974