Coagulation process optimization for turbidity removal improvement at the Teluk Buyung WTP using Response Surface Methodology with Box-Behnken Design
Main Article Content
Abstract
. The effective operation of the coagulation process in the water treatment plant (WTP) is essential in determining the overall performance of the subsequent process. The coagulant dose is critical in affecting coagulation performance. Due to the fluctuations in raw water quality and the infrequent use of jar tests, Teluk Buyung WTP improperly implemented the coagulant dose, which prompted this investigation. This study aimed to identify the optimum coagulant type and develop an optimization model based on the selected coagulant. The optimum coagulant type was determined in the pre-liminary study, with Polyaluminium chloride (PAC) selected as the coagulant that achieved turbidity removal up to 99.81% at a dose of 40 mg/L and a cost-effective production cost of 4.6 x 10-5 USD/liter. The optimization process was conducted by developing a coagulation process model using PAC as the selected coagulant, with critical factors affecting the process including pH, turbidity concentration, and coagulant dose. The coagulation process optimization was performed by using response surface methodology (RSM) with a Box-Behnken design (BBD). The optimal conditions of PAC in the desirability test resulted in turbidity removal of 99.94% with a PAC dose of 150 mg/L, pH of 7.14, and a residual of 0.04%. The optimization of the coagulation process yielded a quadratic model with R2 of 0.996, an R2 prediction of 0.983, and a significant lack of fit test (p = 0.28). The findings of this study can be further implemented to improve turbidity removal in the coagulation process at the Teluk Buyung WTP.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Agarry, S. E., & Ogunleye, O. O. (2012). Box-Behnken design application to study enhanced bioremediation of soil artificially contaminated with spent engine oil using biostimulation strategy. International Journal of Energy and Environmental Engineering, 3(1), 31. https://doi.org/10.1186/2251-6832-3-31
Aziz. N. H. A., Alias. S., Assari. F., & Adlan. N. M. N. (2007). The use of alum, ferric chloride and ferrous sulphate as coagulants in removing suspended solids, colour and COD from semi-aerobic landfill leachate at controlled pH. Waste Management & Research the Journal for a Sustainable Circular Economy, 25(6), 556–565. https://doi.org/10.1177/0734242x07079876
Baghvand. A., Zand. A.D., Mehrdadi. N., & Karbassi A. (2010). Optimizing coagulation process for low to high turbidity waters using aluminum and iron salts. American Journal of Environmental Sciences, 6(5), 442–448. https://doi.org/10.3844/ajessp.2010.442.448
Benouis. K., Alami. A., Khalfi. Y., Guella. S., & Khane. Y. (2022). Optimization of coagulation parameters for turbidity removal using Box-Behnken model. Advances in Intelligent Systems Research/Advances in Intelligent Systems Research, 175. https://doi.org/10.2991/aisr.k.220201.021
BPS-Statistics Indonesia. (2020). Statistik Air Bersih 2015-2020 (Clean Water Statistics 2015-2020). Jakarta: Indonesia. p 1–61
Bratby. J. (2006). Coagulation and Flocculation in Water and Wastewater Treatment Second Edition. London: IWA Publishing
Chamdan, A., & Purnomo, A. (2013). Kajian kinerja teknis proses dan operasi unit koagulasi-flokulasi-sedimentasi pada instalasi pengolahan air (IPA) Kedunguling PDAM Sidoarjo. Jurnal Teknik ITS, 2(2), D118-D123. https://doaj.org/article/ca158a61d8a04476b60efefee4b813b7
Davis. M.L. (2010). Water and Wastewater Engineering Design Principles and Practice. New York: McGrawHill.
Doebelin. E. (2010). Introduction to Statistical Design of Experiments. Instrumentation Design Studies. In CRC Press eBooks (1–30). https://doi.org/10.1201/9781439819487
Ernest. E., Onyeka. O., David. N., & Blessing. O. (2017). Effects of pH, dosage, temperature and mixing speed on the efficiency of water melon seed in removing the turbidity and colour of Atabong River, Awka-Ibom State, Nigeria. International Journal of Advanced Engineering Management and Science, 3(5), 427–434. https://doi.org/10.24001/ijaems.3.5.4
Ferreira. S., Bruns. R., Ferreira. H., Matos. G., David. J., Brandão. G., Da Silva. E., Portugal. L., Reis. P. D., Souza. A., & Santos. W. D. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011
Gökçek, Ö. B., & Özdemir, S. (2020). Optimization of the coagulation–flocculation process for slaughterhouse wastewater using response surface methodology. CLEAN - Soil Air Water, 48(7–8). https://doi.org/10.1002/clen.202000033
Hua. G., Reckhow. D. A., & Abusallout. I. (2015). Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere, 130, 82–89. https://doi.org/10.1016/j.chemosphere.2015.03.039
Ince. M., & Ince. O. K. (2017). Box-Behnken design approach for optimizing removal of copper from wastewater using a novel and green adsorbent. Atomic Spectroscopy, 38(6), 200–207. https://doi.org/10.46770/as.2017.06.005
Jia. R., Jia. R., & Wang. W. (2024). Study on the flocculation performance of composite coagulant PAC-CTS on low-temperature and low-turbidity drinking water source. Desalination and Water Treatment, 321, 100972. https://doi.org/10.1016/j.dwt.2024.100972
Khettaf. S., Khouni. I., Louhichi. G., Ghrabi. A., Bousselmi. L., Bouhidel. K., & Bouhelassa. M. (2021). Optimization of coagulation–flocculation process in the treatment of surface water for a maximum dissolved organic matter removal using RSM approach. Water Science & Technology Water Supply, 21(6), 3042–3056. https://doi.org/10.2166/ws.2021.070
Kumar, S. S., & Bishnoi, N. R. (2017). Coagulation of landfill leachate by FeCl3: process optimization using Box–Behnken design (RSM). Applied Water Science, 7(4), 1943–1953. https://doi.org/10.1007/s13201-015-0372-1
Li. J., Song. X., Pan. J., Zhong. L., Jiao. S., & Ma. Q. (2013). Adsorption and flocculation of bentonite by chitosan with varying degree of deacetylation and molecular weight. International Journal of Biological Macromolecules, 62, 4–12. https://doi.org/10.1016/j.ijbiomac.2013.08.009
McCurdy. K., Carlson. K., & Gregory. D. (2003). Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants. Water Research, 38(2), 486–494. https://doi.org/10.1016/j.watres.2003.10.005
Meetiyagoda, T. a. O. K., Takahashi, T., & Fujino, T. (2023). Response surface optimization of chemical coagulation for solid–liquid separation of dairy manure slurry through Box–Behnken design with desirability function. Heliyon, 9(7), e17632. https://doi.org/10.1016/j.heliyon.2023.e17632
Mesran. M., Suginam. S., Nasution. S. D., & Siahaan. A. P. U. (2017). Penerapan Weighted Sum Model (WSM) dalam penentuan peserta jaminan kesehatan masyarakat. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 2(1), 40. https://doi.org/10.30645/jurasik.v2i1.17
Myers. R.H., Montgomery. D.C., & Anderson-Cook. C.M. (2016). Response surface methodology : process and product optimization using designed experiments – 4th ed. New Jersy: John Willey & Sons Inc
Nti, S. O., Buamah, R., & Atebiya, J. (2021). Polyaluminium chloride dosing effects on coagulation performance: case study, Barekese, Ghana. Water Practice & Technology, 16(4), 1215–1223. https://doi.org/10.2166/wpt.2021.069
Perincek. O., & Colak. M. (2013). Use of experimental Box-Behnken Design for the estimation of interactions between harmonic currents produced by single phase loads. International Journal of Engineering Research and Applications. 3(2). 158–165
Qasim. S. R.. Motley. E. M.. & Zhu. G. (2000). Water Works Engineering: Planning, Design, and Operation. New Dheli. Hall Inc p. 844
Reynolds, T. D., & Richards, P. A. (1982). Unit operation and process in environmental engineering. In Wadsorth, CA
Rifa’i. J. (2007). Pemeriksaan Kualitas Air Bersih Dengan Koagulan Alum dan PAC di IPA Jurug PDAM Kota Surakarta. Surakarta: Universitas Sebelas Maret
Rifi. S. K., Souabi. S., Fels. L. E., Driouich. A., Nassri. I.. Haddaji. C., & Hafidi. M. (2022). Optimization of coagulation process for treatment of olive oil mill wastewater using Moringa oleifera as a natural coagulant. CCD combined with RSM for treatment optimization. Process Safety and Environmental Protection, 162, 406–418. https://doi.org/10.1016/j.psep.2022.04.010
Rinaldo. A.B. (2019). Karakterisasi natural organic matter (NOM) pada PDAM Kabupaten Sleman. Instalasi Lama unit Kregan.Yogyakarta. Yogyakarta. p1–12
Rozy. D.F., Adiba. F., & Ramadanti. R. (2022). Performance Analysis of Teluk Buyung Drinking Water Treatment Plant as Regional Public Company Tirta Patriot Drinking Water. Bekasi City. Jakarta: Universitas Indonesia
Sarika. S. (2012). Server selection by using veighted Ssum and revised weighted sum decision models. International Journal ICT, 2, 6, 499-511.
Sohrabi. Y., Rahimi. S., Nafez. A.H., Mirzaei. N., Bagheri. A., & Ghadiri. S.K. (2018) Chemical coagulation efficiency in removal of water turbidity. Int J Pharm Res.. 10 (3), 188–94. doi.org/10.31838/ijpr/2018.10.03.071
StatEase. (2025). Confirmation. https://www.statease.com
Tahraoui. H., Toumi. S., Boudoukhani. M., Touzout. N., Sid. A. N. E. H., Amrane. A., Belhadj. A., Hadjadj. M., Laichi. Y., Aboumustapha. M., Kebir. M., Bouguettoucha. A., Chebli. D., Assadi. A. A., & Zhang. J. (2024). Evaluating the effectiveness of coagulation–flocculation treatment using aluminum sulfate on a polluted surface water source: A year-long study. Water, 16(3), 400. https://doi.org/10.3390/w16030400
Waila. N. V. C., Sharma. A., & Yusuf. M. (2022). Optimizing the performance of solar PV water pump by using response surface methodology. Evergreen, 9(4), 1151–1159. https://doi.org/10.5109/6625726
Winoto, S. E., Yhopie, & Aprilyanti, S. (2021). Perbandingan penggunaan tawas dan PAC terhadap kekeruhan dan pH air baku PDAM Tirta Musi Palembang. Jurnal Redoks, 6(2), 107–116. https://doi.org/10.31851/redoks.v6i2.5841
Wulan. P.P., Dianursanti. D., Gozan. M., & Nugroho. W.A. (2010). Optimasi Penggunaan Koagulan pada Pengolahan Air Limbah Batu Bara. Jurnal Teknik Kimia. Jakarta: Universitas Indonesia. 16. F06-1
Ye. C., Wang. D., Shi. B., Yu. J., Qu. J., Edwards. M.. & Tang. H. (2007). Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloids and Surfaces a Physicochemical and Engineering Aspects, 294(1–3), 163–173. https://doi.org/10.1016/j.colsurfa.2006.08.005
Zhang. Z., Liu. D., Hu. D., Li. D., Ren. X., Cheng. Y., & Luan. Z. (2013). Effects of slow-mixing on the coagulation performance of polyaluminum chloride (PACI). Chinese Journal of Chemical Engineering, 21(3), 318–323. https://doi.org/10.1016/s1004-9541(13)60463-2