The potential of green mussel shells (Perna viridis) as an alternative calcium source in the cement industry

Main Article Content

Herliati Rahman
Firda Fitriani
Seventien Wahyu Hendry K

Abstract

Green mussel shells (GMSs) are a potential source of calcium oxide for the cement industry. As the largest producer of shells in Asia, Indonesia generates an annual production of 309,886 tons, with approximately 70% of this comprising shell waste. Addressing this issue is crucial to reducing environmental pollution and fistering innovation in eco-friendly cement production. This study aims to explores the extraction of calcium carbonate (CaCO3) from GMSs through a 4-hour calcination process at temperatures of 700°C, 800°C, and 900°C. Analytical methods, including titrimetric analysis and X-ray fluorescence revealed that GMS flour contains 98.16% calcium oxide (CaO). X-ray diffraction analysis at 900°C identified CaCO3 phases consistent with ICDD data No. 01-070-9854, with diffraction peaks observed at 2θ values of 29.4°, 32.21°, and 37.37° (100%). Compressive strength tests further demonstrated that incorporating 10% GMS-derived material into cement increases its compressive strength by 2.3%. These findings highlight the potential of GMSs as an alternative raw material for the cement industry. Maximizing shell waste utilization not only mitigates environmental impact but also supports more sustainable and environmentally friendly cement production. This approach represents a significant advancement in waste management innovation and the development of green solutions in the construction sector.

Article Details

How to Cite
Rahman, H., Fitriani, F., & Hendry K, S. W. (2024). The potential of green mussel shells (Perna viridis) as an alternative calcium source in the cement industry . Sustinere: Journal of Environment and Sustainability, 8(3), 288–297. https://doi.org/10.22515/sustinere.jes.v8i3.401
Section
Articles
References

Argın, G., & Uzal, B. (2021). Enhancement of pozzolanic activity of calcined clays by limestone powder addition. Construction and Building Materials, 284, 122789. https://doi.org/10.1016/j.conbuildmat.2021.122789

Ariane, Cardoso, a S., Rabbani, E. R. K., Delmiro, T. D., Mocock, J. F. B., d, S. P. R., Silva, a, Filippelli, G., d, J. V., Macedo, a S., & Monteiro, E. C. B. (2023). Mollusk shell waste: alternatives for reuse in construction. International Journal of Environment and Waste Management, 31(1), 61. https://doi.org/10.1504/IJEWM.2023.129727

Azis, Y., Jamarun, N., Alfarisi, C. D., Mutamima, A., Komalasari, Nurfatihayati, & Sisca, V. (2022). Precipitated Calcium Carbonate (PCC) From Coral Reef As Raw Material For Synthesis of Hydroxyapatite Nanoparticles. Rasayan Journal of Chemistry, 15(01), 96–101. https://doi.org/10.31788/RJC.2022.1516635

Dzakir, L. O., Amir, M. K., Prianata, Y. L. O., & Kadar, M. I. (2022). Analisis Perbandingan Kadar MgO Dan SiO2 Pada Nikel Kadar Rendah di Kabupaten Kolaka dan Kabupaten Kolaka Utara. Jurnal Geomine, 10(1), 43–50. https://doi.org/10.33536/jg.v10i4.1080

Fadiah, A. N., & Murdiyoto, A. (2022). Kuat Tekan Mortar Dengan Cangkang Kerang Sebagai Subtitusi Agregat Halus. Construction and Material Journal, 4(2), 109–116. https://doi.org/10.32722/cmj.v4i2.4751

Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 1(11), 559–573. https://doi.org/10.1038/s43017-020-0093-3

Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research, 15(2), 204–208. https://doi.org/10.1590/S1516-14392012005000014

Handayani, L., Zuhrayani, R., Putri, N., & Nanda, R. (2020). Pengaruh Suhu Kalsinasi Terhadap Nilai Rendemen CaO Cangkang Tiram (Crassostrea Gigas). Jurnal TILAPIA, 1(1), 1–6. https://doi.org/10.30601/tilapia.v1i1.1007

Hariyati, Anis Shofiyani, & M. Agus Wibowo. (2019). Ekstraksi Kalsium Karbonat (CaCO3) Dari Bahan Dasar Cangkang Kerang Ale-Ale (Meretrix meretrix) Pada Temperatur Kalsinasi 500°C. Jurnal Kimia Khatulistiwa, 8(1), 54–58. https://jurnal.untan.ac.id/index.php/jkkmipa/article/view/32527

Ismail, R., Fitriyana, D. F., Santosa, Y. I., Nugroho, S., Hakim, A. J., Al Mulqi, M. S., Jamari, J., & Bayuseno, A. P. (2021). The potential use of green mussel (Perna viridis) shells for synthetic calcium carbonate polymorphs in biomaterials. Journal of Crystal Growth, 572, 126282. https://doi.org/10.1016/j.jcrysgro.2021.126282

Ismail, R., Laroybafih, M. B., Fitriyana, D. F., Sri Nugroho, Santoso, Y. I., Hakim, A. J., Al Mulqi, M. S., & Bayuseno, A. P. (2021). The Effect of Hydrothermal Holding Time on The Characterization of Hydroxyapatite Synthesized from Green Mussel Shells. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 80(1), 84–93. https://doi.org/10.37934/arfmts.80.1.8493

Pangestuti, E. Kinanthi, & Darmawan, P. (2021). Analysis of Ash Contents in Wheat Flour by The Gravimetric Method. Jurnal Kimia Dan Rekayasa, 2(1), 16–21. https://doi.org/10.31001/jkireka.v2i1.22

Mohebbi, M., Rajabipour, F., & Scheetz, B. E. (2015). Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash. World of Coal Ash (WOCA). http://www.flyash.info/

Rahman, H., & Mulyani, M. (2023). Improve The Compressive Strength Using A Strength Improver Agent (SIA) In The Cement Industry In Indonesia. Jurnal Teknologi, 85(5), 163–169. https://doi.org/10.11113/jurnalteknologi.v85.19629

Rahman, H., & Rahayu, D. (2021). Characteristics of Self Compacting Concrete (SCC) by the Silica Fume as Portland Cement Substitute. Al-Kimia, 9(2), 115–123. https://doi.org/10.24252/al-kimiav9i2.21064

Rahman, H., Sagitha, A., Dyah Puspita, A., Puput Dwi, R., & Salasa, A. (2021). Optimization of Gypsum Composition Against Setting Time And Compressive Strength In Clinker For PCC (Portland Composite Cement). IOP Conference Series: Materials Science and Engineering, 1053(1), 1–8. https://doi.org/10.1088/1757-899x/1053/1/012116

Rodriguez, C., & Tobon, J. I. (2020). Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance. Construction and Building Materials, 251, 119050. https://doi.org/10.1016/j.conbuildmat.2020.119050

Sainudin, M. S., Othman, N. H., Soffian, W. A., Mohammad, W., Haziman, M., Ibrahim, W., & Muthusamy, K. (2019). Properties of Concrete Containing Mussel (Perna viridis) Shell Ash as Partial Cement Replacement. International Journal of Integrated Engineering, 11(9), 154–163. https://doi.org/10.30880/ijie.2019.11.09.017

Fakhri, R. Shamseldeen, & Dawood, E. Thanon (2023). Limestone powder, calcined clay and slag as quaternary blended cement used for green concrete production. Journal of Building Engineering, 79, 107644. https://doi.org/10.1016/j.jobe.2023.107644

Silvia, L., & Zainuri, M. (2020). Analisis Silika (SiO2) Hasil Kopresipitasi Berbasis Bahan Alam menggunakan Uji XRF dan XRD. Jurnal Fisika Dan Aplikasinya, 16(1), 12. https://doi.org/10.12962/j24604682.v16i1.5322

Popović, N. Topić, Lorencin, V., Strunjak-Perović, I., & Čož-Rakovac, R. (2023). Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences, 13(1), 623. https://doi.org/10.3390/app13010623